
Reprint from

Algorithms and Combinatorics
Volume 9
Paths, Rows, and VLSI-Layout

Volume Editors:
B. Kone, L Lovasz, H J. Prb'mel. and A. Schrijver

£ Sprmger-Verlag Berlin Heidelberg 1990
Printed in the United Slates of America Not for Sale

Springer-Verlag

Berlin Heidelberg New York London
Paris Tokyo Hong Kong Barcelona

Network Flow Algorithms
Andrew V. Goldberg, Eva Tardos and Robert E. Tarjan

0. Introduction

Network flow problems are central problems in operations research, computer
science, and engineering and they arise in many real world applications. Starting
with early work in linear programming and spurred by the classic book of
Ford and Fulkerson [26], the study of such problems has led to continuing
improvements in the efficiency of network flow algorithms. In spite of the long
history of this study, many substantial results have been obtained within'trie last
several years. In this survey we examine some of these recent developments and
the ideas behind them.

We discuss the classical network flow problems, the maximum flow problem and
the minimum-cost circulation problem, and a less standard problem, the generalized
flow problem, sometimes called the problem of flows with losses and gains. The
survey contains six chapters in addition to this introduction. Chapter 1 develops
the terminology needed to discuss network flow problems. Chapter 2 discusses
the maximum flow problem. Chapters 3, 4 and 5 discuss different aspects of the
minimum-cost circulation problem, and Chapter 6 discusses the generalized flow
problem. In the remainder of this introduction, we mention some of the history
of network flow research, comment on some of the results to be presented in
detail in later sections, and mention some results not covered in this survey.

We are interested in algorithms whose running time is small as a function of
the size of the network and the numbers involved (e.g. capacities, costs, or gains).
As a measure of the network size, we use n to denote the number of vertices and
m to denote the number of arcs. As measures of the number sizes, we use U to
denote the maximum arc capacity, C to denote the maximum arc cost, and B
(in the case of the generalized flow problem) to denote the maximum numerator
or denominator of the arc capacities and gains. In bounds using U, C, or B,
we make the assumption that the capacities and costs are integers, and that the
gains in the generalized flow problem are rational numbers.

We are most interested in polynomial-time algorithms. We make the following
distinctions. An algorithm is pseudopolynomial if its running time has a bound
that is polynomial in n,m, and the appropriate subset of U, C, and B. An
algorithm is polynomial if its running time has a bound that is polynomial in n,m,

102 A. Goldberg, E. Tardos and R. Tarjan

and the appropriate subset of log (7,logC, and logfl '. An algorithm is strongly
polynomial if its running time has a bound that is polynomial in n and m2. When
comparing polynomial algorithms to strongly polynomial ones we shall use the
similarity assumption that log U, log C and logB are ©(logn) [33]. We shall also
be interested in strongly polynomial algorithms, however.

The network flow problems discussed in this survey are special cases of
linear programming, and thus they can be solved by general-purpose linear
programming algorithms. However, the combinatorial structure of these problems
makes it possible to obtain more efficient algorithms.

We shall not discuss in detail algorithms that are based on general linear
programming methods. We should mention, however, that the first algorithm de-
signed for network flow problems was the network simplex method of Dantzig [20].
It is a variant of the linear programming simplex method designed to take ad-
vantage of the combinatorial structure of network flow problems. Variants of the
simplex method that avoid cycling give an exponential bound on the complexity
of all the network flow problems. (Cunningham [19] gives an elegant anti-cycling
strategy for the network simplex method based on graph-theoretic properties of
the minimum-cost circulation problem). Recently, Goldfarb and Hao [52] have
designed a variant of the primal network simplex method for the maximum
flow problem that runs in strongly polynomial time (see Section 2.1). Orlin [82]
designed a variant of the dual network simplex method for the minimum-cost
circulation problem that runs in strongly polynomial time (see Chapter 5): For
a long time, the network simplex method has been the method of choice in
practice, in particular for the minimum-cost circulation problem (see e.g. [54]);
for large instances of hard problems, the new scaling algorithms are probably
better, however.

The first pseudopolynomial algorithm for the maximum flow problem is the
augmenting path algorithm of Ford and Fulkerson [27, 26]. Dinic [21] and
Edmonds and Karp [22] independently obtained polynomial versions of the
augmenting path algorithm. Since then, several more-efficient algorithms have
been developed. Chapter 2 presents the push/relabel method, recently proposed
by Goldberg [40] and Goldberg and Tarjan [45], along with some of its more
efficient variants.

The first pseudopolynomial algorithm for the minimum-cost circulation prob-
lem is the out-of-kilter method, which was developed independently by Yakov-
leva [105], Minty [77], and Fulkerson [32]. The first polynomial algorithm for
the minimum-cost circulation problem is due to Edmonds and Karp [22]. To
develop this algorithm Edmonds and Karp introduced the technique of scaling,
which has proved to be a useful tool in the design and analysis of algorithms for
a variety of combinatorial optimization problems. Chapter 3 and Section 5.2 are
devoted to scaling algorithms for the minimum-cost circulation problem.

The maximum flow algorithms of Dinic [21] and Edmonds and Karp [22] are
strongly polynomial, but the minimum-cost circulation algorithm of Edmonds

1 All logarithms in this paper without an explicit base are base two.
2 For a more formal definition of polynomial and strongly polynomial algorithms, see [55].

Network Flow Algorithms 103

and Karp [22] is not. The first strongly polynomial algorithm for the minimum-
cost circulation problem was designed by Tardos [96]. Chapter 4 and Section 5.3
are devoted to recent strongly polynomial algorithms for the minimum-cost
circulation problem.

The first augmenting path algorithms for the generalized flow problem were
developed independently by Jewell [62, 63] and Onaga [79]. Many pseudopolyno-
mial minimum-cost circulation algorithms have been adapted for the generalized
flow problem (see [102] for a survey). The first polynomial-time algorithm for the
generalized flow problem was the ellipsoid method [70]. Kapoor and Vaidya [65]
have shown how to speed up Karmarkar [66] — or Renegar [89] — type interior
point algorithms on network flow problems by taking advantage of the special
structure of the matrices used in the linear programming formulations of these
problems. Vaidya's algorithm [103] is the fastest currently known algorithm for
the generalized flow problem. The first polynomial algorithms for the generalized
flow problem that are not based on general-purpose linear programming methods
are due to Goldberg, Plotkin, and Tardos [43]. These algorithms are discussed in
Chapter 6. The existence of a strongly polynomial algorithm for the generalized
flow problem is an interesting open question.

Important special cases of network flow problems that will not be covered in
this survey are the bipartite matching problem and its weighted version, the assign-
ment problem. These problems can be stated as maximum flow and minimum-cost
circulation problems, respectively, on networks with unit capacities and a special
structure (see e.g. [24, 99]). Some of the efficient algorithms for the more gen-
eral problems have evolved from efficient algorithms developed earlier for these
simpler problems.

Konig's [72] proof of a good characterization of the maximum size of a
matching in a bipartite graph gives an O(ww)-time algorithm for finding a
maximum matching. The Ford-Fulkerson maximum flow algorithm can be viewed
as an extension of this algorithm. Hopcroft and Karp [58] gave an 0(^/nm)
algorithm for the bipartite matching problem. Even and Tarjan observed [25]
that Dinic's maximum flow algorithm, when applied to the bipartite matching
problem, behaves similarly to the Hopcroft-Karp algorithm and runs in 0(^/nm)
time as well. A variation of the Goldberg-Tarjan maximum flow algorithm (which
can be viewed as a generalization of Dinic's algorithm) can be easily shown to
lead to the same bound [5, 84]. In spite of recent progress on related problems,
the Ofv/nm) bound has not been improved.

The first algorithm for the assignment problem is the Hungarian method of
Kuhn [73], The out-of-kilter algorithm is an extension of this algorithm to the
minimum-cost circulation problem. The Hungarian method solves the assignment
problem in 0(n) shortest path computations. Edmonds and Karp [22] and
Tomizawa [101] have observed that the dual variables can be maintained so
that these shortest path computations are on graphs with non-negative arc costs.
Combined with the shortest path algorithm of [29], this observation gives an
O(n(m + nlogn)) bound for the problem. Gabow [33] used scaling to obtain an
O(n3/4mlogC) algorithm for the problem. Extending ideas of the Hopcrofl-Karp
bipartite matching algorithm and those of the Goldberg-Tarjan minimum-cost

104 A Goldberg, E. Tardos and R. Tarjan

Table I. Fastesl currently known algorithms for network flow problems

Problem

Bipartite
Matching

Assignment

Maximum
Flow

Minimum-Cost
Circulation

Generalized
Flow

Date

1973

1955
1987

1986
1988

1972
1987
1987
1988

1989

Discoverer

Hopcroft and Karp

Kuhn
Gabow and Tarjan

Goldberg and Tarjan
Ahuja, Orlin, and
Tarjan

Edmonds and Karp
Goldberg and Tarjan
Orlin
Ahuja, Goldberg,
Orlin, and Tarjan

Vaidya

Running Time

O(v/nm)

O(n(m + n\og,n))
0(v/«mlog(«C))

0(nmlog(n*/m))
0(nm\og(iJfc£U + 2))

0(mlog(/(m + nlogn))
0(nm log(n2 /m) log(nC))
O(m log n(m + n log n))
0(nm\og\ogU\og(nC))

O(n2m>5 log(nfi))

References

[58]

[73]
[35]

[45]
[4]

[22]
[49]
[81]
[1]

[103]

circulation algorithm (discussed in Section 3), Gabow and Tarjan obtained an
0(^/nm\og(nC)) algorithm for the assignment problem.

A more recent pseudopolynomial algorithm for the assignment problem is the
auction algorithm of Bertsekas [9] (first published in [10]). This algorithm con-
tains some of the elements of the push/relabel algorithms discussed in Sections 2
and 3.

Some versions of the network simplex method have been shown to solve the
assignment problem in polynomial time. In particular, Orlin [83] shows that
a natural version of the primal simplex method runs in polynomial time, and
Balinski [6] gives a signature method that is a dual simplex algorithm for the
assignment problem and runs in strongly polynomial time.

For discussion of parallel algorithms for the bipartite matching and assign-
ment problems, see [10, 34, 44, 68, 78].

In this survey we would like to highlight the main ideas involved in designing
highly efficient algorithms for network flow problems, rather than to discuss in
detail the fastest algorithms. For an introduction to network flow algorithms see
[26, 74, 87, 99]. However, for easy reference, we summarize the running times of
the fastest currently known algorithms in Table 1. For each problem we list all
of the bounds that are best for some values of the parameters, but we only list
the first algorithm achieving the same bound. Some of the bounds stated in the
table depend on the 0(m + nlogn) implementation of Dijkstra's shortest path
algorithm [29].

Network Flow Algorithms 105

I. Preliminaries

In this chapter we define the problems addressed in this survey and review
fundamental facts about these problems. These problems are the maximum flow
problem, the minimum-cost circulation problem, the transshipment problem, and
the generalized flow problem.

1.1 Flows and Residual Graphs

A network is a directed graph G = (V, E) with a non-negative capacity function
u : E -» Roo.3 We assume that G has no multiple arcs, i.e., E c V x V. If there is
an arc from a vertex v to a vertex w, this arc is unique by the assumption, and
we will denote it by (v, w). This assumption is for notational convenience only.
We also assume, without loss of generality, that the input graph G is symmetric:
(v, w) e E <=> (w, v) e E. A flow network is a network with two distinguished
vertices, the source s and the sink t.

A pseudoflow is a function / : E -» R that satisfies the following constraints:

(1.1) f(v, w) < u(v, w) V(u, w) e £ (capacity constraint),

(1.2) f(v,w) = —f(w,v) V(u,w) 6 E (flow antisymmetry constraint).

Remark. To gain intuition, it is often useful to think only about the non-negative
components of a pseudoflow (or of a generalized pseudoflow, defined below).
The antisymmetry constraints reflect the fact that a flow of value x from v to w
can be thought of as a flow of value (-x) from w to v. The negative flow values
are introduced only for notational convenience. Note, for example, that one does
not have to distinguish between lower and upper capacity bounds: the capacity
of the arc (v, w) represents a lower bound on the flow value on the opposite arc.

Given a pseudoflow /, we define the excess function e/ : V -» R by ef(v) =

Zuer/(">")> tne net fl°w into v' We wil1 say that a vertex v nas excess if ef(v) is

positive, and has deficit if it is negative. For a vertex v, we define the conservation
constraint by

(1.3) ef(v) = 0 (flow conservation constraint).

Given a pseudoflow /, the residual capacity function uf : E —> R is defined by
Uf(v,w) = u(v,w) -f(v,w). The residual graph with respect to a pseudoflow / is
given by G/ = (V,E{), where £/ = {(v,w) e E\uf(v,w) > 0}.

1.2 The Maximum Flow Problem

To introduce the maximum flow problem, we need the following definitions in
addition to the definitions of the previous section. Consider a flow network
(G,u,s,t). A preflow is a pseudoflow / such that the excess function is non-
negative for all vertices other than s and t. A flow f on G is a pseudoflow

= R U {00}

106 A. Goldberg, E. Tardos and R. Tarjan

satisfying the conservation constraints for all vertices except s and t. The value
|/| of a flow / is the net flow into the sink ej(t). A maximum flow is a flow of
maximum value (also called an optimal flow). The maximum flow problem is that
of rinding a maximum flow in a given flow network.

Given a flow /, we define an augmenting path to be a source-to-sink path in
the residual graph. The following theorem, due to Ford and Fulkerson, gives an
optimality criterion for maximum flows.

1.2.1 Theorem [26]. A flow is optimal if and only if its residual graph contains no
augmenting path.

1.3 The Minimum-Cost Circulation Problem

A circulation is a pseudoflow with zero excess at every vertex. A cost function is
a real-valued function on arcs c : E -» R. Without loss of generality, we assume
that costs are antisymmetric:

(1.4) c(v, w) = -c(w, v) V (y , w) e £ (cost antisymmetry constraint).

The cost of a circulation / is given by

c(f) = ^ f (v , w)c(v, w).

The minimum-cost circulation problem is that of finding a minimum-cost (optimal)
circulation in an input network (G, u, c).

We have assumed that the capacities are non-negative. This assumption is
no loss of generality. Given a circulation problem with some negative capacities
one can find a feasible circulation / using one invocation of a maximum flow
algorithm. (See [87], problem ll(e), p. 215.) The non-negative residual capacities
u(v, w) — f(v,w) then define an equivalent problem.

Next we state two criteria for the optimality of a circulation. Define the cost
of a cycle F to be the sum of the costs of the arcs along the cycle and denote it
by c(F). The following theorem states the first optimality criterion.

U.I Theorem [15]. A circulation is optimal if and only if its residual graph
contains no negative-cost cycle.

To state the second criterion, we need the notions of a price function and
a reduced cost function. A price function is a vertex labeling p : K — » R. The
reduced cost function with respect to a price function p is defined by cf(v, w) =
c(v, w) + p(v) — p(w). These notions, which originate in the theory of linear
programming, are crucial for many minimum-cost flow algorithms. As linear
programming dual variables, vertex prices have a natural economic interpretation
as the current market prices of the commodity. We can interpret the reduced
cost cp(v, w) as the cost of buying a unit of commodity at v, transporting it to w,

Network Flow Algorithms 107

and then selling it. Due to the conservation constraints, the reduced costs define
an equivalent problem.

1.3.2 Theorem [26]. A circulation f is optimal for the minimum-cost circulation
problem (G,u,c) if and only if it is optimal for the problem (G,u,cp) for every price
function p.

The second optimality criterion is as follows.

1.3.3 Theorem [26]. A circulation f is optimal if and only if there is a price function
p such that, for each arc (v,w),

(1.5) cp(v, w) < 0 => f (v , w) = u(v, w) (complementary slackness constraint).

A minimum-cost circulation problem may have no optimal solution. The
following theorem characterizes when this is the case.

1.3.4 Theorem. There exists a minimum-cost circulation if and only if the input
network contains no negative-cost cycle consisting of arcs with infinite capacity.

Note that the maximum flow problem is a special case of the minimum-cost
circulation problem (see e.g. [26]). To see this, consider a flow network and add
a pair of new arcs (s, t) and (t,s) with u(s, t) = 0 and u(t, s) = oo. Define the
costs of all original arcs to be zero, and define c(s, t) = —c(t,s) = 1. A minimum-
cost circulation in the resulting network restricted to the original network is a
maximum flow in the original network.

1.4 The Transshipment Problem

In this section we define the (uncapacitated) transshipment problem. Although this
problem is equivalent to the minimum-cost circulation problem, some algorithms
are more natural in the context of the transshipment problem. For a more exten-
sive discussion of this problem and the closely related transportation problem,
see [74].

In the transshipment problem, all arc capacities are either zero or infinity. In
addition, the input to the problem contains a demand function d : V —» R such
that XceK ^(u) = 0- F°r tne transshipment problem, the notion of the excess at a
vertex is defined as follows:

A pseudoflow / is feasible if the conservation constraints (1.3) hold for all vertices.
The transshipment problem is that of finding a minimum-cost feasible pseudoflow
in an input network. In the special case of integer demands, we shall use D to
denote the maximum absolute value of a demand.

Theorems analogous to Theorem 1.3.1, 1.3.3 and 1.3.2. hold for the trans-
shipment problem, and the analog of Theorem 1.3.4 holds for a transshipment
problem that has a feasible pseudoflow.

I OK A. Goldberg, E. Tardos and R. Tarjan

We make two simplifying assumptions about the transshipment problem.
First, we assume that, for the zero flow, all residual arcs have non-negative 'cost.
This assumption can be validated by first checking whether the condition of
Theorem 1.3.4 is satisfied (using a shortest path computation). In the case of
a transshipment problem, the residual graph of the zero flow consists of the
arcs with infinite capacity. If this graph has no negative-cost cycles, then define
p(v) to be the cost of a minimum-cost path from a fixed vertex s to the vertex
v. The costs cp(v, w) define an equivalent problem that satisfies the assumption.
Second, we assume that the residual graph of the zero flow is strongly connected.
(There is a path between each pair of vertices.) This condition can be imposed
by adding two new vertices x and y and adding an appropriately high-cost arc
from x to y with u(x,y) = oo and u(y,x) = 0, and arcs between the new vertices
and every other vertex in both directions such that u(v, x) = u(y,v) = oo and
u(x, v) = u(v, y) = 0 for every vertex v. If the original problem has a feasible
solution, then in every minimum-cost solution of the transformed problem all
of the dummy arcs introduced to make the graph strongly connected have zero
flow.

Next we show that the transshipment problem is equivalent to the minimum-
cost circulation problem (see e.g. [26]). Given an instance of the transshipment
problem, we construct an equivalent instance of the minimum-cost circulation
problem as follows. Add two new vertices, x and y, and arcs (y, x) and (x, y) with
u(x,y) = 0 and u(y,x) = Z^oo^M- Define the cost of (y,x) to be small enough
so that any simple cycle containing (y, x) has negative cost; for example, define
c(y,x) = —c(x,y) = —nC. For every vertex v € V with d(v) > 0, add arcs (x,v)
and (v, x) and define u(x, v) = d(v), u(v,x) = 0, and c(x, v) = c(v,x) = 0. For every
vertex v e V with d(v) < 0, add arcs (v,y) and (y,v) and define u(v,y) = —d(v),
u(y,v) = 0, and c(v,y) = c(y, v) = 0. Consider an optimal solution / to the
minimum-cost circulation problem in the resulting network. The transshipment
problem is feasible if and only if / saturates all new arcs, and in this case the
restriction of/ to the original arcs gives an optimal solution to the transshipment
problem.

Next we reduce the minimum-cost circulation problem to the transshipment
problem. The reduction uses the technique of edge-splitting. Consider a minimum-
cost circulation problem (G, u,c). First we make sure that for every edge {v, w}
of the network, either u(v, w) or u(w,v) is infinite. For every edge {v, w} that does
not satisfy the above condition, we introduce a new vertex X(B,W), and replace
the arcs (v, w) and (w,v) by the arcs (v, x(ivv)), (X(,,iW),w), (w,x(t,iW)), and (x(V,W),v).
Define the costs and capacities of the new arcs as follows :

U(V, X(l)iW)) = U(V, W),

"(X(P,W), w) = oo,
"(W, *(„,*)) = U(\V, V),

«(*<o,w), V) = CO,

C(V, X^H,)) = C(V, W),

c(x(l>,w), w) = 0,
C(V, X(0,w)) = 0,

C(X(V<W), V) = C(\V, V).

This defines an equivalent minimum-cost circulation problem in which the ca-
pacity of every edge is unbounded in at least one direction.

To complete the transformation, we need to force the additional restriction

Network Flow Algorithms 109

that every finite capacity is zero. Initialize the demand function d to be zero
on all vertices. Let {v,w} be an edge such that u(w, v) = oo and u(v, w) is finite
but not zero. Replacing u(v, w) by zero, and d(v) and d(w) by d(v) + u(v, w) and
d(w) — u(v,w), respectively, defines an equivalent problem with u(v, w) = 0.

Remark. This transformation increases the number of vertices: from a network
with n vertices and m edges, we obtain a network with up to n + m vertices and
2m edges. However, the resulting network has a special structure. It is important
for the analyses in Chapter 5 to notice that the newly introduced vertices can
be eliminated for shortest path computations. Consequently, this blowup in the
number of vertices will not affect the running time of shortest path computations
in the residual graph.

The capacitated transshipment problem generalizes both the minimum-cost
circulation problem and the (uncapacitated) transshipment problem discussed
above. It is the same as the uncapacitated transshipment problem without the
assumption that all arc capacities are infinite or zero. The reductions above can be
extended to show that the capacitated transshipment problem is equivalent to the
minimum-cost circulation problem. Whereas the previous simpler formulations
are better suited for designing algorithms, the more general form can be useful
in applications.

1.5 The Generalized Flow Problem

In this section we define generalized pseudoflows, generalized flows, and the
generalized flow problem, and compare these concepts with their counterparts
discussed in the previous sections. For alternative formulations of the problem,
see e.g. [43, 74]. (This problem is also known as the problem of flows with losses
and gains.)

The generalized flow problem is given by a network with a distinguished
vertex, the source s, and a gain function y : E —> R+4 on the arcs. We assume
(without loss of generality) that the gain function is antisymmetric:

(1.7) y(v, w) = — V (u , w) e £ (gain antisymmetry constraints).
y(w,v)

In the case of ordinary flows, if f (v , w) units of flow are shipped from v to
w, f(v,w) units arrive at w. In the case of generalized flows, if g(v, w) units
of flow are shipped from v to w, y(v, w)g(u, w) units arrive at w. A generalized
pseudqflow is a function g : £ —» R that satisfies the capacity constraints (1.1)
and the generalized antisymmetry constraints:

(1.8)

g(v, w) = — y(w, v)g(w, v) V(u, w) e £

(generalized antisymmetry constraints).

The gain of a path (cycle) is the product of the gains of the arcs on the path
(cycle). For a given generalized pseudoflow g, the residual capacity and the
residual graph Gg = (V , Eg) are defined in the same way as for pseudoflows. The
excess eg(v) of a generalized pseudoflow g at a vertex v is defined by

4 R+ denotes the set of positive reals.

110 A. Goldberg. E. Tardos and R. Tarjan

(1.9) ^(D) = - V

We will say that a vertex u has excess if eg(t>) is positive and deficit if it is negative.
A generalized flow is a generalized pseudoflow that satisfies the conservation

constraints (1.3) at all vertices except at the source. The value of a generalized
pseudoflow g is the excess eg(s). The generalized flow problem is that of finding
a generalized flow of maximum value in a given network. In our discussion of
this problem, we shall assume that the capacities are integers, and that each gain
is a rational number given as the ratio of two integers. Let B denote the largest
integer used in the specification of the capacities and gains.

fit. flow-generating cycle is a cycle whose gain is greater than 1, and a. flow-
absorbing cycle is a cycle whose gain is less than 1. Observe that if one unit
of flow leaves a vertex v and travels along a flow-generating cycle, more than
one unit of flow arrives at v. Thus we can augment the flow along this cycle;
that is, we can increase the excess at any vertex of the cycle while preserving the
excesses at the other vertices, by increasing the flow along the arcs in the cycle
(and correspondingly decreasing the flow on the opposite arcs to preserve the
generalized antisymmetry constraints).

The generalized flow problem has the following interpretation in financial
analysis. The commodity being moved is money, nodes correspond to different
currencies and securities, arcs correspond to possible transactions, and gain
factors represent the prices or the exchange rates (see Section 6.1). From the
investor's point of view, a residual flow-generating cycle is an opportunity to
make a profit. It is possible to take advantage of this opportunity, however, only
if there is a way to transfer the profit to the investor's bank account (the source
vertex). This motivates the following definition. A generalized augmenting path
(GAP) is a residual flow-generating cycle and a (possibly trivial) residual path
from a vertex on the cycle to the source. Given a generalized flow and a GAP in
the residual graph, we can augment the flow along the GAP, increasing the value
of the current flow. The role of GAP's in the generalized flow problem is similar
to the role of negative-cost cycles in the minimum-cost circulation problem -
both can be used to augment the flow and improve the value of the current
solution. Onaga [80] proved that the non-existence of GAP's in the residual
graph characterizes the optimality of a generalized flow.

1.5.1 Theorem [80]. A generalized flow is optimal if and only if its residual graph
contains no GAP.

Using the linear programming dual of the problem, it is possible to give
an alternate optimality criterion, similar to the criterion in Theorem 1.3.3 for
the minimum-cost circulation problem. A price function p is a labeling of the
vertices by real numbers, such that p(s) = 1. As in the case of the minimum-cost
circulation problem, vertex prices can be interpreted as market prices of the
commodity at vertices. If a unit of flow is purchased at v and shipped to w, then
y(v, w) units arrive at w. Buying the unit at v costs p(v), and selling y(v, w) units

Nelwork Flow Algorithms 111

at w returns p(w)y(v, w). Thus the reduced cost of (v, w) is defined as

cp(v, w) = p(v) - p(w)y(v, w).

Linear programming duality theory provides the following optimality criterion.

1.5.2 Theorem [62]. A generalized flow is optimal if and only if there exists a price
function p such that the complementary slackness conditions (1.5) hold for each arc
(v, w) € E.

One generalization of the problem, namely the generalized flow problem with
costs, is worth mentioning here. As the name suggests, in this problem each arc
(v, w) has a cost c(v, w) in addition to its gain. The goal is to find a generalized
flow that maximizes eg(s)- c(g), where c(g) = ^^w):g(l!iW}>0c(v,w)g(v,w). The
introduction of costs enriches the combinatorial structure of the problem and
allows the modeling of more complex problems, in particular economic processes.
For example, a positive cost flow-generating cycle with a path leading to a
negative cost flow-absorbing cycle may be used as a producer-consumer model.
The generalized flow problem with costs has not been studied as much as the
other problems discussed in this survey, and the only polynomial-time algorithms
known for this problem are based on general linear programming methods [65,
103].

1.6 The Restricted Problem

Next we introduce a special variant of the generalized flow problem, and show
that this variant is equivalent to the original problem.

Consider for a moment the following variation of the generalized flow prob-
lem : given a flow network with a source s e V and a sink t e V, find a generalized
pseudoflow with maximum excess at t and zero excess at each vertex other than
s and r. Onaga [79] suggested the study of the special case of this problem in
which the residual graph of the zero flow has no flow-generating cycles. We shall
consider the corresponding special case of the generalized flow problem in which
the residual graph of the zero flow has the property that all flow-generating cycles
pass through the source. (If there are no flow-generating cycles, the zero flow is
the optimal.) We shall also assume that the residual graph of the zero flow is
strongly connected. A generalized flow network in which the residual graph of
the zero flow is strongly connected and which has no flow-generating cycles not
passing through the source is called a restricted network. The restricted problem
is the generalized flow problem on a restricted network. The restricted problem
has a simpler combinatorial structure that leads to simpler algorithms. Moreover,
it turns out that the restricted problem is equivalent to the generalized flow
problem. All of the algorithms that we review solve the restricted problem. In
the rest of this section we shall review basic properties of the restricted problem,
and we outline the reduction. In Chapter 6 we will use the term "generalized
flow problem" to mean the restricted problem.

112 A. Goldberg, E. Tardos and R. Tarjan

One of the nice facts about the restricted problem is that the optimality
condition given by Theorem 1.5.2 simplifies in this case, and becomes very
similar to Theorem 1.3.1. This characterization, which is also due to Onaga [79],
can be deduced from Theorem 1.5.2 with the use of the following lemma. The
lemma can be proved by induction on the number of arcs with positive flow.

1.6.1 Lemma. Let g be a generalized pseudojiow in a restricted network. If the
excess at every vertex is non-negative, then for every vertex v there exists a path
from v to s in the residual graph Ge.

1.6.2 Theorem [80]. A generalized flow g in a restricted network is optimal if and
only if the residual graph of g contains no flow-generating cycles.

Note that the condition in the theorem can be formulated equivalently as "if
and only if the residual graph of g has no negative-cost cycles, where the cost
function is given by c = —logy."

1.6.3 Theorem [43]. The generalized flow problem can be reduced to the restricted
problem in O(nm) time.

Proof sketch: Given an instance of the generalized flow problem, reduce it to an
instance in which all the flow-generating cycles pass through 5, as follows. Let h
be the generalized pseudoflow that saturates all arcs of gain greater than 1 and is
zero on all arcs of gain 1. Define a new generalized flow network containing each
arc (v, w) of the original network, with new capacity u(v,w) — h(v,w). For each
vertex v e V such that e>,(v) > 0, add an arc (s, v) of capacity u(s, v) = e>,(v)/x,
and with gain y(s,v) = a, where a = B". Also add a reverse arc (v,s) with
u(v,s) = 0. For each vertex v 6 V with e/,(u) < 0, add an arc (v,s) of capacity
u(v,s) = e>,(v) and with gain y(v,s) = a; also add a reverse arc (s,v) with
u(v,s) = 0. Let g be an optimal generalized flow in the new network. Consider
the generalized pseudoflow g + h restricted to the arcs of the original network.
Using the Decomposition Theorem 1.7.3 below, one can show that the value
of this generalized pseudoflow is equal to the value of the optimal generalized
flow, and an optimal generalized flow can be constructed from this generalized
pseudoflow in O(nm) time. Intuitively, the new arcs ensure that vertices having
excesses with respect to h are supplied with an adequate amount of "almost free"
flow, and vertices having deficits with respect to h can deliver the corresponding
amount of flow very efficiently to the source.

Having eliminated flow-generating cycles not containing the source, we can
impose the strong connectivity condition by deleting all of the graph except the
strongly connected component containing the source. This does not affect the
value of an optimum solution by Theorem 1.5.2. D

Note that this transformation increases the size of the numbers in the problem
description. However, the polynomial-time algorithms described later depend
only on T (< B"), the maximum product of gains along a simple path, and
L (< B2m), the product of denominators of arc gains; these parameters do not
increase significantly.

Network Flow Algorithms 113

1.7 Decomposition Theorems

A useful property of flows and generalized flows is the fact that they can be
decomposed into a small number of "primitive elements". These elements depend
on the problem under consideration. In.this section we review decomposition
theorems for circulations, pseudoflows, and generalized pseudoflows.

In the case of circulations, the primitive elements of the decomposition are
flows along simple cycles.

1.7.1 Theorem [26]. For every circulation f , there exists a collection of k < m
circulations g i , . . . ,g t such that for every i, the graph induced by the set of arcs on
which gi is positive is a simple cycle consisting of arcs (v, w) with f (v , w) > 0, and

d-10) /(»,w) = £gi.

Such a decomposition can be found in 0(nm) time.

For pseudoflows (or flows), the primitive elements of the decomposition are
flows along simple cycles and flows along simple paths.

1.7.2 Theorem [26]. For every pseudoflow f , there exists a collection of k <; m
pseudoflows g [, . . . , g k . such that for every i, the graph induced by the set of arcs
on which g, is positive is either a simple cycle or a simple path from a vertex with
deficit to a vertex with excess; it consists of arcs (v, w) with f (v , w) > 0, and (1.10)
is satisfied. Such a decomposition can be found in O(nm) time.

The five primitive elements of the decomposition for generalized pseudoflows
g are defined as follows. The set of arcs on which an element of the decomposition
of g is positive is a subset of the arcs on which g is positive. Let T(g) denote the
set of vertices with excesses and let S(g) denote the set of vertices with deficits.
The five types of primitive elements are classified according to the graph induced
by the set of arcs with positive flow. Type I: A path from a vertex in S(g) to a
vertex in T(g). Such a flow creates a deficit and an excess at the two ends of the
path. Type I I : A flow-generating cycle and a path leading from this cycle to a
vertex in T(g). Such a flow creates excess at the end of the path. (If the path
ends at the source, then this corresponds to a GAP.) Type IIJ: A flow-absorbing
cycle and a path from a vertex in S(g) to this cycle. Such a flow creates a deficit
at the end of the path. Type IV'. A cycle with unit gain. Such a flow does not
create any excesses or deficits. Type V: A pair of cycles connected by a path,
where one of the cycles generates flow and the other one absorbs it. Such a flow
does not create any excesses or deficits.

1.73 Theorem [43, 53]. For a generalized pseudoflow g there exist k < m primitive
pseudoflows g\,...,gk such that, for each i, g, is of one of the five types described
above, and (1.10) is satisfied. Such a decomposition can be found in 0(nm) time.

Remark. In all three of these theorems the time to find the claimed decomposition
can be reduced to O(mlogn) by using the dynamic tree data structure that will
be discussed in Section 2.5.

114 A. Goldberg, E. Tardos and R. Tarjan

2. The Maximum Flow Problem

2.1 Introduction

The maximum flow problem has been studied for over thirty years. The clas-
sical methods for solving this problem are the Ford-Fulkerson augmenting path
method [27, 26], the closely related blocking flow method of Dinic [21], and an
appropriate variant of the network simplex method (see e.g. [61]). A push-relabel
method for solving maximum flow problems has been recently proposed by Gold-
berg [40] and fully developed by Goldberg and Tarjan [45, 46]. Recently, parallel
and distributed algorithms for the maximum flow problem have been studied as
well.

Many maximum flow algorithms use scaling techniques and data structures
to achieve better running time bounds. The scaling techniques used by maximum
flow algorithms are capacity scaling, introduced by Edmonds and Karp [22] in the
context of the minimum-cost circulation problem, and the closely related excess
scaling of Ahuja and Orlin [3]. The dynamic tree data structure of Sleator and
Tarjan [94, 95] makes it possible to speed up many maximum flow algorithms.

The technical part of this survey deals with the push-relabel method, which
gives better sequential and parallel complexity bounds than previously known
methods, and seems to outperform them in practice. In addition to describing
the basic method, we show how to use excess scaling and dynamic trees to obtain
faster implementations of the method. In this section we discuss the previous
approaches and their relationship to the push-relabel method.

The augmenting path algorithm of Ford and Fulkerson is based on the fact
that a flow is maximum if and only if there is no augmenting path. The algorithm
repeatedly finds an augmenting path and augments along it, until no augmenting
path exists. Although this simple generic method need not terminate if the
network capacities are reals, and it can run in exponential time if the capacities
are integers represented in binary [26], it can be made efficient by restricting
the choice of augmenting paths. Edmonds and Karp [22] have shown that two
strategies for selecting the next augmenting path give polynomial time bounds.
The first such strategy is to select, at each iteration, a shortest augmenting path,
where the length of a path is the number of arcs on the path. The second strategy
is to select, at each iteration, a fattest path, where the fatness of a path is the
minimum of the residual capacities of the arcs on the path.

Independently, Dinic [21] suggested finding augmenting paths in phases,
handling all augmenting paths of a given shortest length in one phase by finding
a blocking flow in a layered network. The shortest augmenting path length
increases from phase to phase, so that the blocking flow method terminates
in n — 1 phases. Dinic's discovery motivated a number of algorithms for the
blocking flow problem. Dinic proposed an O(nm) blocking flow algorithm. Soon
thereafter, Karzanov [69] proposed an O(n2) algorithm, which achieves the best
known bound for dense graphs. Karzanov also introduced the concept of a
preflow; this concept is used by many maximum flow algorithms. Simpler
algorithms achieving an O(n2) bound are described in [75, 97]. A sequence of

Network Flow Algorithms 115

algorithms achieving better and better running times on non-dense graphs has
been proposed [17, 33, 36, 37, 49, 92, 95]. The algorithm of [33] uses capacity
scaling; the algorithms of [95] and [49] use dynamic trees. The fastest currently-
known sequential algorithm for the blocking flow problem, due to Goldberg and
Tarjan, runs in 0(mlog(n2/m)) time [49].

Cherkasskij [18] proposed a method based on finding a blocking preflow in
a layered network instead of a blocking flow. He gave an O(n2) algorithm
for finding a blocking preflow based on Karzanov's algorithm, and proved an
0(n3) bound on the total running time. The resulting algorithm is simpler than
Karzanov's and seems to be better in practice. Conceptually, this algorithm is a
step from the blocking flow method to the push/relabel method.

The push-relabel method [40, 41, 45, 49] replaces the layered network of
the blocking flow method by a distance labeling of the vertices, which gives
an estimate of the distance to the sink in the residual graph. The algorithm
maintains a preflow and a distance labeling, and uses two simple operations,
pushing and relabeling, to update the preflow and the labeling, repeating them
until a maximum flow is found. The pushing operation is implicit in Karzanov's
algorithm. The construction of a layered network at each iteration of Dinic's
method can be viewed as a sequence of relabeling operations. Unlike the blocking
flow method, the push-relabel method solves the maximum flow problem directly,
without reducing the problem to a sequence of blocking flow subproblems. As a
result, this method is more general and flexible than the blocking flow method,
and leads to improved sequential and parallel algorithms. Ahuja and Orlin [3]
suggested one way of recasting algorithms based on Dinic's approach into the
push-relabel framework.

Goldberg's FIFO5 algorithm [40] runs in 0(n3) time. Goldberg and Tar-
jan [45, 46] showed how to use the dynamic tree data structure to improve the
running time of this algorithm to 0(nmlog(n2/m)). They also gave a largest-label
variant of the algorithm, for which they obtained the same time bounds - O(n3)
without dynamic trees and 0(wnlog(n2/m)) with such trees. Cheriyan and Ma-
heshwari [16] showed that (without dynamic trees) the FIFO algorithm runs in
Q(n3) time, whereas the largest-label algorithm runs in 0(n2^/m) time. Ahuja and
Orlin [3] described an 0(nm + n2 log l/)-time version of the push-relabel method
based on excess scaling. Ahuja, Orlin, and Tarjan [4] gave a modification of the
Ahuja-Orlin algorithm that runs in O(nm + n2^/\ogU) time without the use of
dynamic trees and in O (nm log(̂ \/\og U + 2)) time with them.

The primal network simplex method (see e.g. [61] is another classical method
for solving the maximum flow problem. Cunningham [19] gave a simple pivoting
rule that avoids cycling due to degeneracy. Of course, if a simplex algorithm does
not cycle, it must terminate in exponential time. Until recently, no polynomial
time pivoting rule was known for the primal network simplex method. Goldfarb
and Hao [52] have given such a rule. The resulting algorithm does 0(nm) pivots,
which correspond to 0(nm) flow augmentations; it runs in 0(n2m) time. Interest-
ingly, the blocking flow method also makes 0(nm) flow augmentations. Unlike

FIFO is an abbreviation of f irst-in, first-out.

116 A. Goldberg, E. Tardos and R. Tarjan

the blocking flow method, the Goldfarb-Hao algorithm does not necessarily aug-
ment along shortest augmenting paths. In their analysis, Goldfarb and Hao use a
variant of distance labeling and a variant of the relabeling operation mentioned
above. Dynamic trees can be used to obtain an 0(nmlogn)-time implementation
of their algorithm [42].

The best currently known sequential bounds for the maximal flow problem are
O(nm\og(n2/m)) and 0(nm log(£ vlog U + 2)). Note that, although the running
times of the known algorithms come very close to an 0(mn) bound, the existence
of a maximum flow algorithm that meets this bound remains open.

With the increasing interest in parallel computing, parallel and distributed
algorithms for the maximum flow problem have received a great deal of attention.
The first parallel algorithm for the problem, due to Shiloach and Vishkin [93],
runs in O(n2 log n) time on an ^-processor PRAM [28] and uses O(n) memory per
processor. In a synchronous distributed model of computation, this algorithm
runs in O(n2) time using 0(n3) messages and O(n) memory per processor. The
algorithm of Goldberg [40, 41, 46] uses less memory than that of Shiloach and
Vishkin: O(m) memory for the PRAM implementation and O(A) memory per
processor for the distributed implementation (where A is the processor degree in
the network). The time, processor, and message bounds of this algorithm are the
same as those of the Shiloach-Vishkin algorithm. Ahuja and Orlin [3] developed
a PRAM implementation of their excess-scaling algorithm. The resource bounds
are \m/n\ processors, 0(m) memory, and O(n2\ogn\og U) time. Cheriyan and
Maheshwari [16] proposed a synchronous distributed implementation of the
largest-label algorithm that runs in O(n2) time using 0(A) memory per processor
and O(n2^/m) messages.

For a long time, the primal network simplex method was the method of
choice in practice. A study of Goldfarb and Grigoriadis [51] suggested that the
algorithm of Dinic [21] performs better than the network simplex method and
better than the later algorithms based on the blocking flow method. Recent
studies of Ahuja and Orlin (personal communication) and Grigoriadis (personal
communication) show superiority of various versions of the push-relabel method
to Dinic's algorithm. An experimental study of Goldberg [41] shows that a
substantial speedup can be achieved by implementing the FIFO algorithm on a
highly parallel computer.

More efficient algorithms have been developed for the special case of planar
networks. Ford and Fulkerson [27] have observed that the the maximum flow
problem on a planar network is related to a shortest path problem on the planar
dual of the network. The algorithms in [8, 27, 30, 56, 57, 60, 64, 76, 88] make
clever use of this observation.

2.2 A Generic Algorithm

In this section we describe the generic push-relabel algorithm [41, 45, 46]. First,
however, we need the following definition. For a given preflow /, a distance
labeling is a function d from the vertices to the non-negative integers such that

Network Flow Algorithms 117

d(t) = 0, d(s) = n, and d(v) < d(w) + 1 for all residual arcs (v,w). The intuition
behind this definition is as follows. Define a distance graph G'f as follows. Add
an arc (s, t) to Gf. Define the length of all residual arcs to be equal to one and
the length of the arc (s, t) to be n. Then d is a "locally consistent" estimate on
the distance to the sink in the distance graph. (In fact, it is easy to show that
d is a lower bound on the distance to the sink.) We denote by da- (v, w) the
distance from vertex v to vertex w in the distance graph. The generic algorithm
maintains a preflow / and a distance labeling d for /, and updates / and d using
push and relabel operations. To describe these operations, we need the following
definitions. We say that a vertex v is active if v $ {s,t} and e/(t>) > 0. Note that'
a preflow / is a flow if and only if there are no active vertices. An arc (v, w) is
admissible if (v, w) e £/ and d(v) = d(w) + 1.

The algorithm begins with the preflow / that is equal to the arc capacity on
each arc leaving the source and zero on all arcs not incident to the source, and
with some initial labeling d. The algorithm then repetitively performs, in any
order, the update operations, push and relabel, described in Figure 2.2. When there
are no active vertices, the algorithm terminates. A summary of the algorithm
appears in Figure 2.1.

procedure generic (V,E,u);
[initialization]
V(u, w) e £ do begin

/<»,*) <-0;
if v = s then /(s, w) <— u(s, w);
if w = s then f (v , s) « u(s, v);

end;
Vw € V do begin

e/(w) —Z^eE/^"1);
if w = s then d(w) = n else d(w) = 0;

end;
[loop]
while 3 an active vertex do

select an update operation and apply it;
return(/);

end.

Fig. 2.1 The generic maximum flow algorithm

The update operations modify the preflow / and the labeling d. A push from
u to w increases f (v , w) and e/(tv) by up to d = m\n{ef(v),Uf(v, w)}, and decreases
f (w , v) and e/(v) by the same amount. The push is saturating if Uf(v, w) = 0 after
the push and nonsaturating otherwise. A relabeling of v sets the label of v equal
to the largest value allowed by the valid labeling constraints.

118 A. Goldberg, E. Tardos and R. Tarjan

Applicabi l i ty: v is active and (D, w) is admissible.
Action: send 6 e (0, min(e/(i>),u/(v, w))] units of flow from v to w.

relabel(v).
Applicabi l i ty: either s or f is reachable from v in G/ and

Vw € V u,(v, w) = 0 or d(w) £ d(v).
Action: replace d(v) by mm^w^El{d(w)} + 1.

Fig. 2.2 The update operations. The pushing operation updates the preflow, and the
relabeling operation updates the distance labeling. Except for the excess scaling algorithm,
all algorithms discussed in this section push the maximum possible amount 6 when doing
a push

There is one part of the algorithm we have not yet specified: the choice
of an initial labeling d. The simplest choice is d(s) = n and d(v) = 0 for
v e V — {s}. A more accurate choice (indeed, the most accurate possible choice)
is d(v) = dc-(v,t) for v e V, where / is the initial preflow. The latter labeling can
be computed in 0(m) time using backwards breadth-first searches from the sink
and from the source in the residual graph. The resource bounds we shall derive
for the algorithm are correct for any valid initial labeling. To simplify the proofs,
we assume that the algorithm starts with the simple labeling. In practice, it is
preferable to start with the most accurate values of the distance labels, and to
update the distance labels periodically by using backward breadth-first search.

Remark. By giving priority to relabeling operations, it is possible to maintain
the following invariant: Just before a push, d gives the exact distance to t in the
distance graph. Furthermore, it is possible to implement the relabeling operations
so that the total work done to maintain the distance labels is O(nm) (see e.g. [46]).
Since the running time bounds derived in this section are fl(nm), one can assume
that the relabeling is done in this way. In practice, however, maintaining exact
distances is expensive; a better solution is to maintain a valid distance labeling
and periodically update it to the exact labeling.

Next we turn our attention to the correctness and termination of the algorithm.
Our proof of correctness is based on Theorem 1.2.1. The following lemma is
important in the analysis of the algorithm.

2.2.1 Lemma. // / is a preflow and v is a vertex with positive excess, then the
source s is reachable from v in the residual graph Gf.

Using this lemma and induction on the number of update operations, it can
be shown that one of the two update operations must be applicable to an active
vertex, and that the operations maintain a valid distance labeling and preflow.

2.2.2 Theorem. Suppose that the algorithm terminates. Then the preflow f is a
maximum flow.

Network Flow Algorithms 119

Proof. When the algorithm terminates, all vertices in V — {s,t} must have zero
excess, because there are no active vertices. Therefore / must be a flow. We
show that if / is a preflow and d is a valid labeling for /, then the sink t is not
reachable from the source s in the residual graph G/. Then Theorem 1.2.1 implies
that the algorithm terminates with a maximum flow.

Assume by way of contradiction that there is an augmenting path s =
VQ,V\,...,VI = t. Then / < n and (u,-,u i+i) € £/ for 0 < / < /. Since d is a
valid labeling, we have d(v{) < d(v^.\) + 1 for 0 < i < /. Therefore, we have
d(s) <, d(t) +1 < n, since d(t) = 0, which contradicts d(s) = n. D

The key to the running time analysis of the algorithm is the following lemma,
which shows that distance labels cannot increase too much.

2.2.3 Lemma. At any time during the execution of the algorithm, for any vertex
veV, d(v) < 2n - 1.

Proof. The lemma is trivial for v = s and v = t. Suppose v 6 V — {s,t}. Since the
algorithm changes vertex labels only by means of the relabeling operation, it is
enough to prove the lemma for a vertex v such that 5 or t is reachable from v in
Gf. Thus there is a simple path from v to s or t in Gf. Let v = VQ,V},...,VI be
such a path. The length / of the path is at most n — 1. Since d is a valid labeling
and (vt,u,-+i) € £/, we have d(vi) < d(vi+i) + 1. Therefore, since d(vi) is either n or
0, we have d(v) = d(vo) < d(v,) + I < n + (n - 1) = 2n - 1. D

Lemma 2.2.3 limits the number of relabeling operations, and allows us to
amortize the work done by the algorithm over increases in vertex labels. The
next two lemmas bound the number of relabelings and the number of saturating
pushes.

2.2.4 Lemma. The number of relabeling operations is at most In — 1 per vertex and
at most (2n — \)(n — 2) < 2n2 overall.

2.2.5 Lemma. The number of saturating pushes is at most nm.

Proof. For an arc (v, w) e E, consider the saturating pushes from v to w. After
one such push, Uf(v, w) = 0, and another such push cannot occur until d(w)
increases by at least 2, a push from w to v occurs, and d(v) increases by at least
2. If we charge each saturating push from v to w except the first to the preceding
label increase of t;, we obtain an upper bound of n on the number of such pushes.

n

The most interesting part of the analysis is obtaining a bound on the number
of nonsaturating pushes. For this we use amortized analysis and in particular the
potential function technique (see e.g. [98]).

2.2.6 Lemma. The number of nonsaturating pushing operations is at most 2n2m.

Proof. We define the potential <b of the current preflow / and labeling d by the
formula 4> = is Kt-m] d(v). We have 0 <, <D < 2n2 by Lemma 2.2.3. Each

120 A. Goldberg, E. Tardos and R. Tarjan

nonsaturating push, say from a vertex v to a vertex w, decreases <t> by at least
one, since d(w) = d(v) — 1 and the push makes v inactive. It follows that the total
number of nonsaturating pushes over the entire algorithm is at most the sum of
the increases in <I> during the course of the algorithm, since O = 0 both at the
beginning and at the end of the computation. Increasing the label of a vertex v
by an amount k increases <& by k. The total of such increases over the algorithm
is at most 2n2. A saturating push can increase <D by at most 2n - 2. The total
of such increases over the entire algorithm is at most (2n — 2)nm. Summing gives
a bound of at most 2n2 + (2n — 2)nm < 2n2m on the number of nonsaturating
pushes.

2.2.7 Theorem [46]. The generic algorithm terminates after 0(n2m) update opera-
tions.

Proof. Immediate from Lemmas 2.2.4, 2.2.5, and 2.2.6. D

The running time of the generic algorithm depends upon the order in which
update operations are applied and on implementation details. In the next sections
we explore these issues. First we give a simple implementation of the generic
algorithm in which the time required for the nonsaturating pushes dominates
the overall running time. Sections 2.3 and 2.4 specify orders of the update
operations that decrease the number of nonsaturating pushes and permit 0(n3)
and 0(mn + n2log l/)-time implementations. Section 2.5 explores an orthogonal
approach. It shows how to use sophisticated data structures to reduce the time
per nonsaturating push rather than the number of such pushes.

2.3 Efficient Implementation

Our first step toward an efficient implementation is a way of combining the update
operations locally. We need some data structures to represent the network and
the preflow. We call an unordered pair {v,w} such that (v,w) e £ an edge of G.
We associate the three values u(v,w), u(w,v), and f(v,w)(= -f(w,v)) with each
edge {v,w}. Each vertex v has a list of the incident edges {v,\v}, in fixed but
arbitrary order. Thus each edge {v,w} appears in exactly two lists, the one for v
and the one for w. Each vertex v has a current edge {v, w}, which is the current
candidate for a pushing operation from v. Initially, the current edge of v is the
first edge on the edge list of v. The main loop of the implementation consists
of repeating the discharge operation described in Figure 2.3 until there are no
active vertices. (We shall discuss the maintenance of active vertices later.) The
discharge operation is applicable to an active vertex v. This operation iteratively
attempts to push the excess at v through the current edge {v,w} of v if a pushing
operation is applicable to this edge. If not, the operation replaces {v,w} as the
current edge of v by the next edge on the edge list of v; or, if {v,w} is the last
edge on this list, it makes the first edge on the list the current one and relabels
v. The operation stops when the excess at v is reduced to zero or v is relabeled.

Network Flow Algorithms 121

discharge(v).
Applicability:
Action:

v is active.
let {v, w} be the current edge of u;
time-to-relabel <— false;
repeat

if (v, w) is admissible then push(v, w)
else

if {v, w} is not the last edge on the edge list of v then
replace {v,w} as the current edge of t> by the
next edge on the list

else begin
make the first edge on the edge list of v the current edge;
time-to-relabel <— true;

end;
until ef(v) = 0 or time-to-relabel;
if time-to-relabel then relabel(v);

Fig. 23 The discharge operation

The following lemma shows that discharge does relabeling correctly; the proof
of the lemma is straightforward.

2.3.1 Lemma. The discharge operation does a relabeling only when the relabeling
operation is applicable.

2.3.2 Lemma. The version of the generic push/relabel algorithm based on discharg-
ing runs in O(nm) time plus the total time needed to do the nonsaturating pushes
and to maintain the set of active vertices.

Any representation of the set of active vertices that allows insertion, deletion,
and access to some active vertex in 0(1) time results in an O(/i2m) running time
for the discharge-based algorithm, by Lemmas 2.2.6 and 2.3.2. (Pushes can be
implemented in O(l) time per push.)

By processing active vertices in a more restricted order, we obtain improved
performance. Two natural orders were suggested in [45, 46]. One, the FIFO
algorithm, is to maintain the set of active vertices as a queue, always selecting for
discharging the front vertex on the queue and adding newly active vertices to the
rear of the queue. The other, the largest-label algorithm, is to always select for
discharging a vertex with the largest label. The FIFO algorithm runs in 0(n3)
time [45, 46] and the largest-label algorithm runs in 0(n2^/m) time [16]. We shall
derive an O(n3) time bound for both algorithms, after first describing in a little
more detail how to implement largest-label selection.

The implementation maintains an array of sets B,, 0 < i < 2n — 1, and an
index b into the array. Set B, consists of all active vertices with label i, represented
as a doubly-linked list, so that insertion and deletion take O(l) time. The index
b is the largest label of an active vertex. During the initialization, when the arcs

122 A. Goldberg, E. Tardos and R. Tarjan

procedure process-vertex;
remove a vertex v from BI,;
old-label«- d(v);
discharge(v);
add each vertex w made active by the discharge to
if d(v) =£ old-label then begin

fe <-<<(»))
add u to Bk;

end

else if Bfc = 0 then b «- b - 1;

end.

Fig. 2.4 The process-vertex procedure

going out of the source are saturated, the resulting active vertices are placed in
BO, and b is set to 0. At each iteration, the algorithm removes a vertex from
BI,, processes it using the discharge operation, and updates b. The algorithm
terminates when b becomes negative, i.e., when there are no active vertices. This
processing of vertices, which implements the while loop of the generic algorithm,
is described in Figure 2.4.

To understand why the process-vertex procedure correctly maintains b, note
that discharge^) either relabels v or gets rid of all excess at v, but not both. In
the former case, v is the active vertex with the largest distance label, so b must
be increased to d(v). In the latter case, the excess at v has been moved to vertices
with distance labels of b - 1, so if Bb is empty, then b must be decreased by one.
The total time spent updating b during the course of the algorithm is O(n2).

The bottleneck in both the FIFO method and the largest-label method is
the number of nonsaturating pushes. We shall obtain an 0(n3) bound on
the number of such pushes by dividing the computation into phases, defined
somewhat differently for each method. For the FIFO method, phase 1 consists
of the discharge operations applied to the vertices added to the queue by the
initialization of /; phase i + 1, for i < I, consists of the discharge operations
applied to the vertices added to the queue during phase i. For the largest-label
method, a phase consists of a maximal interval of time during which b remains
constant.

2.3.3 Lemma. The number of phases during the running of either the FIFO or the
largest-label algorithm is at most 4n2.

Proof. Define the potential <D of the current / and d by * = maxw,, is »a

with the maximum taken to be zero if there are no active vertices. (In the case
of the largest-label algorithm, <t> = b except on termination.) There can be only
2n2 phases that do one or more relabelings. A phase that does no relabeling
decreases $ by at least one. The initial and final values of <£ are zero. Thus the
number of phases that do no relabeling is at most the sum of the increases in
4) during the computation. The only increases in <l> are due to label increases;

Network Flow Algorithms 123

an increase of a label by k can cause <I> to increase by up to k. Thus the sum of
the increases in <I> over the computation is at most 2n2, and so is the number of
phases that do no relabeling. D

2.3.4 Theorem [46]. Both the FIFO and the largest-label algorithm run in 0(n3)
time.

Proof. For either algorithm, there is at most one nonsaturating push per vertex
per phase. Thus by Lemma 2.3.3 the total number of nonsaturating pushes is
0(«3), as is the running time by Lemma 2.3.2. D.

Cheriyan and Maheshwari [16], by means of an elegant balancing argument,
were able to improve the bound on the number of nonsaturating pushes in the
largest-label algorithm to 0(n2

v/m), giving the following result:

2.3.5 Theorem [16]. The largest-label algorithm runs in O(n2^/m) time.

2.4 Excess Scaling ,

A different approach to active vertex selection leads to running time bounds
dependent on the size U of the largest capacity as well as on the graph size. This
approach, excess scaling, was introduced by Ahuja and Orlin [3] and developed
further by Ahuja, Orlin, and Tarjan [4]. We shall describe in detail a slight
revision of the original excess-scaling algorithm, which has a running time of
O(nm + n2\ogU).

For the termination of the excess-scaling method, all arc capacities must be
integral; hence we assume throughout this section that this is the case. The
method preserves integrality of the flow throughout the computation. It depends
on a parameter A that is an upper bound on the maximum excess of an active
vertex. Initially A = 2r'ogf;1. The algorithm proceeds in phases; after each phase,
A is halved. When A < 1, all active vertex excesses must be zero, and the
algorithm terminates. Thus the algorithm terminates after at most Iog2 U + 1
phases. To maintain the invariant that no active vertex excess exceeds A, the
algorithm does not always push the maximum possible amount when doing a
pushing operation. Specifically, when pushing from a vertex v to a vertex w, the
algorithm moves an amount of flow d given by 8 = min{e/(t>), u/(u, w), A — e/(w)}
if w J= t, 6 — mm{ef(v), uj(v, w)} if w = t. That is, 6 is the maximum amount that
can be pushed while maintaining the invariant.

The algorithm consists of initialization of the preflow, the distance labels, and
A, followed by a sequence of process-vertex operations of the kind described in
Section 2.3. Vertex selection for process-vertex operations is done by the large
excess, smallest label rule: process an active vertex v with ef(v) > A/2; among
all candidate vertices, choose one of smallest label. When every active vertex v
has ef(v) < A/2, A is halved and a new phase begins; when there are no active
vertices, the algorithm stops.

124 A. Goldberg, E. Tardos and R. Tarjan

Since the excess-scaling algorithm is a version of the generic process-vertex-
based algorithm described in Section 2.3, Lemma 2.3.2 applies. The following
lemma bounds the number of nonsaturating pushes:

2.4.1 Lemma. The number of nonsaturating pushes during the excess-scaling algo-
rithm is O(n2 log U).

Proof. We define a potential <D by <t = £(i)|(, (s ac|jvc) gf(v) d(v)/A. Since ef(v) /A <

1 for any active vertex, 0 ^ <J> <, 2n2. Every pushing operation decreases <D.
Consider a nonsaturating push from a vertex v to a vertex w. The large ex-
cess, smallest label rule guarantees that before the push ef(v) > A/2 and either
ef(w) < A/2 or w = t. Thus the push moves at least A/2 units of flow, and
hence decreases <D by at least 1/2. The initial and final values of <D are zero, so the
total number of nonsaturating pushes is at most twice the sum of the increases
in <I> over the course of the algorithm. Increasing the label of a vertex by k can
increase d> by at most k. Thus relabelings account for a total increase in d> of at
most 2n2. A change in phase also increases <D, by a factor of two, or at most n2.
Hence the sum of increases in $ is at most 2n2 + n2 (Iog2 U + 1), and therefore
the number of nonsaturating pushes is at most 4n2 + 2n2 (Iog2 U + 1). D

The large excess, smallest label rule can be implemented by storing the active
vertices with excess exceeding A/2 in an array of sets, as was previously described
for the largest-label rule. In the former case, the index b indicates the nonempty
set of smallest index. Since b decreases only when a push occurs, and then by at
most 1, the total time spent updating b is O (nm + n2 log U). From Lemmas 2.3.2
and 2.4.1 we obtain the following result:

2.4.2 Theorem. The excess-scaling algorithm runs in O (nm + n2 log U) time.

A more complicated version of excess scaling, devised by Ahuja, Orlin, and
Tarjan [4], has a running time of O (nm + n2v/log U). This algorithm uses a
hybrid vertex selection rule that combines a stack-based mechanism with the
"wave" approach of Tarjan [97].

2.5 Use of Dynamic Trees

The two previous sections discussed ways of reducing the number of nonsatu-
rating pushes by restricting the order of the update operations. An orthogonal
approach is to reduce the time per nonsaturating push rather than the number
of such pushes. The idea is to perform a succession of pushes along a single
path in one operation, using a sophisticated data structure to make this possible.
Dbserve that immediately after a nonsaturating push along an arc (v, w), (v,w)
is still admissible, and we know its residual capacity. The dynamic tree data
structure of Sleator and Tarjan [94, 95] provides an efficient way to maintain
information about such arcs. We shall describe a dynamic tree version of the
generic algorithm that has a running time of 0 (nm log «).

Network Flow Algorithms 125

make-tree(v): Make vertex v into a one-vertex dynamic tree. Vertex v must
be in no other tree.

find-root (v): Find and return the root of the tree containing vertex v.

firui-value(v): Find and return the value of the tree arc connecting v to its
parent. If v is a tree root, return infinity.

find-min(v): Find and return the ancestor w of v such that the tree arc
connecting w to its parent has minimum value along the path
from v to find-root(v). In case of a tie, choose the vertex w
closest to the tree root. If v is a tree root, return v.

change-value(v, x): Add real number x to the value of every arc along the path
from v to find-root (v).

link(v, w, x]: Combine the trees containing v and w by making w the parent
of v and giving the new tree arc joining v and w the value x.
This operation does nothing if v and w are in the same tree
or if v is not a tree root.

cut (v): Break the tree containing v into two trees by deleting the arc
from v to its parent. This operation does nothing if t) is a
tree root.

Fig. 2.5 The dynamic tree operations

The dynamic tree data structure allows the maintenance of a collection of
vertex-disjoint rooted trees, each arc of which has an associated real value. We
regard a tree arc as directed toward the root, i.e., from child to parent. We denote
the parent of a vertex v by parent(v), and adopt the convention that every vertex
is both an ancestor and a descendant of itself. The data structure supports the
seven operations described in Figure 2.5. A sequence of / tree operations on trees
of maximum size (number of vertices) k takes O(/logfc) time.

In the dynamic tree algorithm, the arcs of the dynamic trees are a subset
of the admissible arcs and every active vertex is a tree root. The value of an
arc (v, w) is its residual capacity. Initially each vertex is made into a one-vertex
dynamic tree using a make-tree operation.

The heart of the dynamic tree implementation is the tree-push operation
described in Figure 2.6. This operation is applicable to an admissible arc (v, w)
such that v is active. The operation adds (v, w) to the forest of dynamic trees,
pushes as much flow as possible along the tree from v to the root of the tree
containing w, and deletes from the forest each arc that is saturated by this flow
change.

The dynamic tree algorithm is just the generic algorithm with the push
operation replaced by the tree-push operation, with the initialization modified
to make each vertex into a dynamic tree, and with a postprocessing step that
extracts the correct flow value for each arc remaining in a dynamic tree. (This
postprocessing takes one find-value operation per vertex.)

It is straightforward to show that the dynamic tree implementation is correct,
by observing that it maintains the invariant that between tree-pushing operations

126 A. Goldberg, E. Tardos and R. Tarjan

Tree-push (v, w)
Applicabi l i ty: v is active and (v, w) is admissible.
Action: link (v, w,u/(v,w));

parent (v) «— w;

S <- m\n{et (v),find-value(find-min(v));
change-value (v, — 5);

while D j= find-root(v) and find-value(find-min(v)) = 0 do begin
z <—find-min(v);
cut (z);
/(z,par«H(z)) «- u(z, parent (z));

/ (parent (z), z) < u(z, parent (z));
end.

Fig. 2.6 The tree-push operation

every active vertex is a dynamic tree root and every dynamic tree arc is admissible.
The following lemma bounds the number of tree-push operations:

2.5.1 Lemma. The number of the tree-push operations done by the dynamic tree
implementation is 0(nm).

Proof. Each tree-push operation either saturates an arc (thus doing a saturating
push) or decreases the number of active vertices by one. The number of active
vertices can increase, by at most one, as a result of a tree-push operation that
saturates an arc. By Lemma 2.2.5 there are at most nm saturating pushes. An
upper bound of 2nm + n on the number of tree-push operations follows, since
initially there are at most n active vertices. D

If we implement the dynamic tree algorithm using the discharge operation
of Section 2.3 with push replaced by tree-push, we obtain the following result
(assuming active vertex selection takes O(l) time):

2.5.2 Theorem. The discharge-based implementation of the dynamic tree algorithm
runs in O(nmlogn) time.

Proof. Each tree-pushing operation does 0(1) dynamic tree operations plus 0(1)
per arc saturated. The theorem follows from Lemma 2.2.5, Lemma 2.3.2, and
Lemma 2.5.1, since the maximum size of any dynamic tree is O(n). D

The dynamic tree data structure can be used in combination with the
FIFO, largest-label, or excess-scaling method. The resulting time bounds are
O(nm\og(n2/m)) for the FIFO and largest-label methods [46] and O(nm
logf^N/log V) + 2)) for the fastest version of the excess-scaling method [4]. In
each case, the dynamic tree method must be modified so that the trees are not too
large, and the analysis needed to obtain the claimed bound is rather complicated.

Network Flow Algorithms 127

3. The Minimum-Cost Circulation Problem: Cost Scaling

3.1 Introduction

Most polynomial-time algorithms for the minimum-cost circulation problem use
the idea of scaling. This idea was introduced by Edmonds and Karp [22], who
used it to develop the first polynomial-time algorithm for the problem. Scaling
algorithms work by obtaining a sequence of feasible or almost-feasible solutions
that are closer and closer to the optimum. The Edmonds-Karp algorithm
scales capacities. Rock [90] was the first to propose an algorithm that scales
costs. Later, Bland and Jensen [13] proposed a somewhat different cost-scaling
algorithm, which is closer to the generalized cost scaling method discussed in this
chapter.

The cost-scaling approach works by solving a sequence of problems, P0, /> , , . . . ,
Pk, on the network with original capacities but approximate costs. The cost
function c, for P, is obtained by taking the i most significant bits of the original
cost function c. The first problem P0 has zero costs, and therefore the zero
circulation is optimal. An optimal solution to problem P,-i can be used to obtain
an optimal solution to problem P, in at most n maximum flow computations [13,
90]. Note that for k = riog2C], ck = c. Thus the algorithm terminates in
O(nlogC) maximum flow computations.

Goldberg and Tarjan [41, 48, 50] proposed a generalized cost-scaling approach.
The idea of this method (which is described in detail below) is to view the
maximum amount of violation of the complementary slackness conditions as
an error parameter, and to improve this parameter by a factor of two at each
iteration. Initially the error is at most C, and if the error is less than 1/n,
then the current solution is optimal. Thus the generalized cost-scaling method
terminates in 0(log(nC)) iterations. The computation done at each iteration is
similar to a maximum flow computation. The traditional cost-scaling method
of Rock also improves the error from iteration to iteration, but it does so
indirectly, by increasing the precision of the current costs and solving the resulting
problem exactly. Keeping the original costs, as does the generalized cost-scaling
approach, makes it possible to reduce the number of iterations required and to
obtain strongly-polynomial running time bounds. Chapter 4 discusses a strongly-
polynomial version of the generalized cost-scaling method. For further discussion
of generalized versus traditional cost-scaling, see [49].

Time bounds for the cost-scaling algorithms mentioned above are as
follows. The algorithms of Rock [90] and Bland and Jensen [13] run in
O(nlog(C)M(n,m, U)) time, where M(n,m,U) is the time required to compute
a maximum flow on a network with n vertices, m arcs, and maximum arc capac-
ity U. As we have seen in Chapter 2, M = O(nm log min{«2/m, £ ,/log U + 2}).
The fastest known implementation of the generalized cost-scaling method runs
in O(nmlog(n2/m)log(nC)) time [48]. It is possible to combine cost scaling with
capacity scaling. The first algorithm that combines the two scaling techniques is
due to Gabow and Tarjan [35]. A different algorithm was proposed by Ahuja et

12X A. Goldberg, E. Tardos and R. Tarjan

al. [1]. The latter algorithm runs in O(nmloglog U log(nC)) time, which makes it
the fastest known algorithm for the problem under the similarity assumption.

3.2 Approximate Optimally

A key notion is that of approximate optimality, obtained by relaxing the com-
plementary slackness constraints in Theorem 1.3.3. For a constant e > 0, a
pseudoflow / is said to be (.-optimal with respect to a price function p if, for every
arc (v, w), we have

(3.1) f (v , w) < u(v, w) => cp(v, w) S; -e (e-optimality constraint).

A pseudoflow / is e-optimal if / is e-optimal with respect to some price function

P-
An important property of 6-optimality is that if the arc costs are integers

and E is small enough, any e-optimal circulation is minimum-cost. The following
theorem, of Bertsekas [11] captures this fact.

3.2.1 Theorem [11]. If all costs are integers and £ < \/n, then an e-optimal circu-
lation f is minimum-cost.

The E-optimality constraints were first published by Tardos [96] in a paper
describing the first strongly polynomial algorithm for the minimum-cost circu-
lation problem. Bertsekas [11] proposed a pseudopolynomial algorithm based
upon Theorem 3.2.1; his algorithm makes use of a fixed £ < 1/n. Goldberg and
Tarjan [41, 49, 50] devised a successive approximation scheme that produces a
sequence of circulations that are e-optimal for smaller and smaller values of e;
when E is small enough, the scheme terminates with an optimal circulation. We
discuss this scheme below.

3.3 The Generalized Cost-Scaling Framework

Throughout the rest of this chapter, we assume that all arc costs are integral.
We give here a high-level description of the generalized cost-scaling method (see
Figure 3.1). The algorithm maintains an error parameter e, a circulation / and a
price function p, such that / is e-optimal with respect to p. The algorithm starts
with e = C (or alternatively e = 2rioB*cl), with p(v) = 0 for all u e V, and with the
zero circulation. Any circulation is C-optimal. The main loop of the algorithm
repeatedly reduces the error parameter £. When £ < 1/n, the current circulation
is minimum-cost, and the algorithm terminates.

The task of the subroutine refine is to reduce the error in the optimality of
the current circulation. The input to refine is an error parameter E, a circulation
/, and a price function p such that / is £-optimal with respect to p. The output
from refine is a reduced error parameter £, a new circulation /, and a new price
function p such that / is E-optimal with respect to p. The implementations of
refine described in this survey reduce the error parameter e by a factor of two.

Network Flow Algorithms 129

procedure min-cost(V, E, u, c);
[initialization]

E — C ;
Vi>, p(v) «- 0;

V(u,w)e£, /(u,H>)«-0;
[loop]
while £ > 1/n do

(e,/,p) <- refine(£,f,p);
return (/);

end.

Fig. 3.1 The generalized cost-scaling method

The correctness of the algorithm is immediate from Theorem 3.2.1, assuming
that refine is correct. The number of iterations of refine is 0(log(nC)). This gives
us the following theorem:

3.3.1 Theorem [50]. A minimum-cost circulation can be computed in the time re-
quired for O(log(nC)) iterations of refine, if refine reduces e by a factor of at least
two.

3.4 A Generic Refinement Algorithm

In this section we describe an implementation of refine that is a common gener-
alization of the generic maximum flow algorithm of Section 2.2 and the auction
algorithm for the assignment problem [9] (first published in [10]). We call this
the generic implementation. This implementation, proposed by Goldberg and
Tarjan [50], is essentially the same as the main loop of the minimum-cost cir-
culation algorithm of Bertsekas [11], which is also a common generalization of
the maximum flow and assignment algorithms. The ideas behind the auction
algorithm can be used to give an alternative interpretation to the results of [41,
50] in terms of relaxation methods; see [12].

As we have mentioned in Section 3.3, the effect of refine is to reduce e by a
factor of two while maintaining the e-optimality of the current flow / with respect
to the current price function p. The generic refine subroutine is described on
Figure 3.2. It begins by halving e and saturating every arc with negative reduced
cost. This converts the circulation / into an e-optimal pseudoflow (indeed, into
a 0-optimal pseudoflow). Then the subroutine converts the e-optimal pseudoflow
into an e-optimal circulation by applying a sequence of the update operations
push and relabel, each of which preserves e-optimality.

The inner loop of the generic algorithm consists of repeatedly applying the
two update operations, described in Figure 3.3, in any order, until no such
operation applies. To define these operations, we need to redefine admissible arcs
in the context of the minimum-cost circulation problem. Given a pseudoflow /

130 A. Goldberg, E. Tardos and R. Tarjan

procedure refine(c,f,p);
[initialization]
F. «- c/2;
V(u, w) e E do if CP(D, w) < 0 then begin

f (v , w) «- u(y, W);/(K>, u) < U(D, w);
end;

[loop]
while 3 an update operation that applies do

select such an operation and apply it;
return(£,/,p);

end.

Fig. 3.2 The generic refine subroutine

push(v, w).
Applicabi l i ty: v is active and {v,w) is admissible.
Action: send d = min(e/(i;),u/(u, w)) units of flow from v to w.

relabel(v).
Applicabi l i ty: v is active and VH> e V (uf(v,w) = 0 or c f (v , w) > 0).
Action: replace p(v) by max(CiVV)€£/(p(tv) — c(v, w) — e}.

Fig. 3.3 The update operations for the generic refinement algorithm. Compare with
Figure 2.2

and a price function p, we say that an arc (v, w) is admissible if (v, w) is a residual
arc with negative reduced cost.

A push operation applies to an admissible arc (v, w) such that vertex v is
active. It consists of pushing 6 = min{ef(v),Uf(v, w)} units of flow from v to w,
thereby decreasing ej(v) and f(w,v) by 6 and increasing e/(w) and f (v , w) by 5.
The push is saturating if u/(u, w) = 0 after the push and nonsaturating otherwise.

A relabel operation applies to an active vertex v that has no exiting admissible
arcs. It consists of decreasing p(v) to the smallest value allowed by the e-optimality
constraints, namely max^e^— c(v, w) + p(w) — e}.

If an £-optimal pseudoflow / is not a circulation, then either a pushing or a
relabeling operation is applicable. It is easy to show that any pushing operation
preserves E-optimality. The next lemma gives two important properties of the
relabeling operation.

3.4.1 Lemma. Suppose f is an e-optimal pseudoflow with respect to a price function
p and a vertex v is relabeled. Then the price of v decreases by at least e and the
pseudoflow f is e-optimal with respect to the new price function p'.

Network Flow Algorithms 131

Proof. Before the relabeling, cp(v,w) > 0 for all (v,w) € £/, i.e., p(v) > p(w) -
c(v, w) for all (v, w) e Ef. Thus p'(v) = max(lwl££/ {p(w) - c(v< w) - e} ^ p(v) - e.

To verify e-optimality, observe that the only residual arcs whose reduced costs
are affected by the relabeling are those of the form (v, w) or (w, v). Any arc of
the form (w,v) has its reduced cost increased by the relabeling, preserving its
e-optimality constraint. Consider a residual arc (v, w). By the definition of p',
p'(v) > p(w)-c(v,w)-E. Thus<y(D,w) = c(v, w) + p'(v) -p(w) > -E, which means
that (v, w) satisfies its e-optimality constraint. rj

Since the update operations preserve e-optimality, and since some update
operation applies i f / is not a circulation, it follows that if refine terminates and'
returns (e,/,p), then / is a circulation which is e-optimal with respect to p. Thus
refine is correct.

Next we analyze the number of update operations that can take place during
an execution of refine. We begin with a definition. The admissible graph is the
graph GA = (V,EA) such that EA is the set of admissible arcs. As refine executes,
the admissible graph changes. An important invariant is that the admissible
graph remains acyclic.

3.4.2 Lemma. Immediately after a relabeling is applied to a vertex v, no admissible
arcs enter v.

Proof. Let («, v) be a residual arc. Before the relabeling, cp(u, v) > -e by e-
optimality. By Lemma 3.4.1, the relabeling decreases p(v), and hence increases
cp(u, v), by at least e. Thus cp(u, v) > 0 after the relabeling. Q

3.4.3 Corollary. Throughout the running of refine, the admissible graph is acyclic.

Proof. Initially the admissible graph contains no arcs and is thus acyclic. Pushes
obviously preserve acyclicity. Lemma 3.4.2 implies that relabelings also preserve
acyclicity. rj

Next we derive a crucial lemma, which generalizes Lemma 2.2.1.

3.4.4 Lemma. Let f be a pseudoflow and f a circulation. For any vertex v with
e/(v) > 0, there is a vertex w with ef(w) < 0 and a sequence of distinct vertices
v = vo,vi,...,vi-.i,vi = w such that (vi,vi+}) e Ef and (vi+i,v,) e Er for 0 < i < /.

Proof. Let w be a vertex with ef(v) > 0. Define G+ = (K,£+), where E+ =
{(x,y)\f(x,y] > f (x , y) } , and define G_ = (K,£_), where £_ = [(x,y)\f(x,y) >
f (x , y) } . Then £+ s Ef, since (x,y) e £.h implies f (x , y) < f'(x,y) < u(x,y).
Similarly £_ s Ef. Furthermore (x,y) e £+ if and only if (y,x) e £_ by
antisymmetry. Thus to prove the lemma it suffices to show the existence in G+ of
a simple path v = VQ, v\..., u, with ef(vi) < 0.

Let S be the set of all vertices reachable from t; in G+ and let S = V - S.
(Set S may be empty.) For every vertex pair (x,y) e S x S, f (x , y) > f ' (x , y) , for

132 A. Goldberg, E. Tardos and R Tarjan

otherwise y e S. We have

0 = !(*.,)£(SxS)n£ /'(* >) since /' is a circulation
* I(Me,s xs,n£ /(*• 30 holds term-by-term

,
I(x,»e(SxS)n£ /(*- JO by antisymmetry

) by definition °f S

ef(x) by antisymmetry.

nBut u € S. Since e/(u) > 0, some vertex w e S must have e/(w) < 0.

Using Lemma 3.4.4 we can bound the amount by which a vertex price can
decrease during an invocation of refine.

3.4.5 Lemma. The price of any vertex v decreases by at most 3ne during an execu-
tion of refine.

Proof. Let /& and p-u be the circulation and price functions on entry to refine.
Suppose a relabeling causes the price of a vertex i; to decrease. Let / be the
pseudoflow and p the price function just after the relabeling. Then ef(v) > 0. Let
V = VQ,V\,...,VI = w with e/(w) < 0 be the vertex sequence satisfying Lemma 3.4.4
for / and /' = f i t -

The e-optimality of / implies

i_i (-1
(3.2) - IB <]T cp(Vi, vi+i) = p(v) - p(w) + £ c(vit vi+l).

j=0 '=0

The 2£-optimality of /& implies

(3.3) - 2/£ ^

'=0

But £^c(t>,,u,+1) = -I^c(i>,-n,t>i) by cost antisymmetry. Furthermore,
p(w) = pit(w) since during refine, the initialization step is the only one that makes
the excess of some vertices negative, and a vertex with negative excess has the
same price as long as its excess remains negative. Adding inequalities (3.2) and
(3.3) and rearranging terms thus gives

p(v) 2: Pb(v) - 3/e > pii(v) - 3ne.

Now we count update operations. The following lemmas are analogous to
Lemmas 2.2.4, 2.2.5 and 2.2.6.

3.4.6 Lemma. The number of relabeling* during an execution of refine is at most
3n per vertex and 3n(n - \) in total.

Network Flow Algorithms 133

3.4.7 Lemma. The number of saturating pushes during an execution of refine is at
most 3nm.

Proof. For an arc (v,w), consider the saturating pushes along this arc. Before the
first such push can occur, vertex v must be relabeled. After such a push occurs, v
must be relabeled before another such push can occur. But v is relabeled at most
3n times. Summing over all arcs gives the desired bound. D

3.4.8 Lemma. The number of nonsaturating pushes during one execution of refine
is at most 3«2(m + n).

Proof. For each vertex v, let <J>(u) be the number of vertices reachable from v in
the current admissible graph GA. Let <3t> = 0 if there are no active vertices, and
let <I> = £{<I>(i>)|u is active} otherwise. Throughout the running of refine, <I> > 0.
Initially <!><«, since GA has no arcs.

Consider the effect on $ of update operations. A nonsaturating push decreases
$ by at least one, since GA is always acyclic by Corollary 3.4.3. A saturating push
can increase $ by at most n, since at most one inactive vertex becomes active. If
a vertex v is relabeled, <I> also can increase by at most n, since 0>(w) for w J= v
can only decrease by Lemma 3.4.2. The total number of nonsaturating pusHes is
thus bounded by the initial value of <t plus the total increase in <I> throughout
the algorithm, i.e., by n + 3n2(n - 1) + 3n2m < 3n2(m + n). D

3.5 Efficient Implementation

As in the case of the generic maximum flow algorithm, we can obtain an especially
efficient version of refine by choosing the order of the update operations carefully.

Local ordering of the basic operations is achieved using the data structures
and the discharge operation of Section 2.3. The discharge operation is the same
as the one in Figure 2.3, but uses the minimum-cost circulation versions of the
update operations (see Figure 3.3). As in the maximum flow case, it is easy
to show that discharge applies the relabeling operation correctly. The overall
running time of refine is O(nm) plus 0(1) per nonsaturating push plus the time
needed for active vertex selection.

In the maximum flow case, one of the vertex selection methods we considered
was the largest-label method. In the minimum-cost circulation case, a good
method is first-active [49], which is a generalization of the largest-label method.
The idea of the method is to process vertices in topological order with respect to
the admissible graph.

The first-active method maintains a list L of all the vertices of G, in topological
order with respect to the current admissible graph GA, i.e., if (v, w) is an arc of
GA, v appears before w in L. Initially L contains the vertices of G in any order.
The method consists of repeating the following step until there are no active
vertices: Find the first active vertex on L, say v, apply a discharge operation to v,
and move v to the front of L if the discharge operation has relabeled v.

134 A. Goldberg, E. Tardos and R. Tarjan

procedure first-active;
let L be a list of all vertices;
let v be the first vertex in L;
while 3 an active vertex do begin

if i is active then begin
discharge(v);
if the discharge has relabeled v then

move u to the front of L;
end;
else replace v by the vertex after v on L,

end;
end.

Fig. 3.4 The first-active method

In order to implement this method, we maintain a current vertex v of L, which
is the next candidate for discharging. Initially v is the first vertex on L. The
implementation, described in Fig. 3.4, repeats the following step until there are
no active vertices: If v is active, apply a discharge operation to it, and if this
operation relabels v, move v to the front of L; otherwise (i.e., v is inactive), replace
v by the vertex currently after it on L. Because the reordering of L maintains a
topological ordering with respect to GA, no active vertex precedes v on L. This
implies that the implementation is correct.

Define a phase as a period of time that begins with v equal to the first vertex
on L and ends when the next relabeling is performed (or when the algorithm
terminates).

3.5.1 Lemma. The first-active method terminates after O(n2) phases.

Proof. Each phase except the last ends with a relabeling operation. D

3.5.2 Theorem [50]. The first-active implementation of refine runs in O(n}) time,
giving an O(n3 log(nC)) bound for finding a minimum-cost circulation.

Proof. Lemma 3.5.1 implies that there are 0(n3) nonsaturating pushes (one per
vertex per phase) during an execution of refine. The time spent manipulating L
is O(n) per phase, for a total of 0(n3). All other operations require a total of
O(nm) time. D

A closely related strategy for selecting the next vertex to process is the wave
method [41, 49, 50], which gives the same O(n3) running time bound for refine.
(A similar pseudopolynomial algorithm, without the use of scaling and missing
some of the implementation details, was developed independently in [11].) The
only difference between the first-active method and the wave method is that the
latter, after moving a vertex v to the front of L, replaces v by the vertex after the
old position of v; if v is the last vertex on L, v is replaced by the first vertex on L.

Network Flow Algorithms 135

As in the maximum flow case, the dynamic tree data structure can be used to
obtain faster implementations of refine. A dynamic tree implementation of the
generic version of refine analogous to the maximum flow algorithm discussed in
Section 2.5 runs in O(nmlogn) time [50]. A dynamic tree implementation of either
the first-active method or the wave method runs in O(nmlog(«2/m)) time [49]. In
the latter implementation, a second data structure is needed to maintain the list
L. The details are somewhat involved.

3.6 Refinement Using Blocking Flows

An alternative way to implement the refine subroutine is to generalize Dinic's
approach to the maximum flow problem. Goldberg and Tarjan [49, 50] showed
that refinement can be carried out by solving a sequence of 0(n) blocking flow
problems on acyclic networks (i.e., on networks for which the residual graph of
the zero flow is acyclic); this extends Dinic's result, which reduces a maximum
flow problem to n — 1 blocking flow problems on layered networks. In this section
we describe the Goldberg-Tarjan algorithm. At the end of this section, we make
a few comments about blocking flow algorithms.

To describe the blocking flow version of refine we need some standard
definitions. Consider a flow network (G, u, s, t). A flow / is blocking if any path
from s to I in the residual graph of zero flow contains a saturated arc, i.e., an arc
(v, vv) such that Uf(v, w) = 0. A maximum flow is blocking, but not conversely. A
directed graph is layered if its vertices can be assigned integer layers in such a
way that layer(v) = layer(w) + 1 for every arc (v, w). A layered graph is acyclic
but not conversely.

An observation that is crucial to this section is as follows. Suppose we have
a pseudoflow / and a price function p such that the vertices can be partitioned
into two sets, S and S, such that no admissible arc leads from a vertex in S to a
vertex in S; in other words, for every residual arc (v, w) 6 £/ such that v € S and
w 6 S, we have cf(v, w) > 0. Define p' to be equal to p on S and to p — e on S.
It is easy to see that replacing p by p' does not create any new residual arc with
reduced cost less than —B. The blocking flow method augments by a blocking
flow to create a partitioning of vertices as described above, and modifies the price
function by replacing p by p'.

Figure 3.5 describes an implementation of refine that reduces e by a factor of
two by computing O(n) blocking flows. This implementation reduces e by a factor
of two, saturates all admissible arcs, and then modifies the resulting pseudoflow
(while maintaining s-optimality with respect to the current price function) until
it is a circulation. To modify the pseudoflow, the method first partitions the
vertices of G into two sets S and S, such that S contains all vertices reachable
in the current admissible graph GA from vertices of positive excess. Vertices in S
have their prices decreased by e. Next, an auxiliary network N is constructed by
adding to GA a source s, a sink t, an arc (s,v) of capacity ej(v) for each vertex v
wi th c'j(v) > 0, and an arc (v, t) of capacity — ef(v) for each vertex with ej(v) < 0.
An arc (v, w) € EA has capacity u;(v, w) in N. A blocking flow b on N is found.

136 A. Goldberg, E. Tardos and R. Tarjan

procedure refine(E,f,p);
[initialization]
£ •- «/2;
V(y,H>) e E do if cf(v, w) < 0 then f(v, w) «- u(v, w);
[loop]
while / is not a circulation do begin

S «- {D € ^Pu e K such that es(u) > 0 and u is reachable from u in GA}',
Vu e S, p(i)) «- p(u) - s;
let N be the network formed from G^ by adding a source s, a sink r,

an arc (s, u) of capacity ey(u) for each v e K with e/(r) > 0, and
an arc (v, t) of capacity — ej(v) for each y e K with e/(v) < 0;

find a blocking flow 6 on N;
V(t),w) e £^, /(D,W) «- /(«,

end;
return(e,/, p);

end.

Fig. 3.5 The blocking refine subroutine

Finally, the pseudoflow / is replaced by the pseudoflow f'(v, w) = f (v , w) + b(v, w)
for (v, w) 6 £.

The correctness of the blocking flow method follows from the next lemma,
which can be proved by induction on the number of iterations of the method.

3.6.1 Lemma. The set S computed in the inner loop contains only vertices v with
e;(v) > 0. At the beginning of an iteration of the loop, f is an e-oprima/ pseudoflow
with respect to the price function p. Decreasing the prices of vertices in S by e
preserves the E-optimality of f . The admissible graph remains acyclic throughout
the algorithm.

The bound on the number of iterations of the method follows from Lemma
3.4.5 and the fact that the prices of the vertices with deficit remain unchanged,
while the prices of the vertices with excess decrease by e during every iteration.

3.6.2 Lemma. The number of iterations of the inner loop in the blocking flow
implementation of refine is at most 3n.

Since the running time of an iteration of the blocking flow method is domi-
nated by the time needed for a blocking flow computation, we have the following
theorem.

3.6.3 Theorem. The blocking flow implementation of refine runs in 0(nB(n,m)) time,
giving an O(nB(n,m)log(nC)) bound for finding a minimum-cost circulation, where
B(n,m) is the time needed to find a blocking flow in an acyclic network with n
vertices and m arcs.

The fastest known sequential algorithm for finding a blocking flow on an
acyclic network is due to Goldberg and Tarjan [49] and runs in 0(mlog(n2/m))

Network Flow Algorithms 137

time. Thus, by Theorem 3.6.3, we obtain an 0(nmlog(n2/m) log(nC)) time bound
for the minimum-cost circulation problem. This is the same as the fastest known
implementation of the generic refinement method.

There is a crucial difference between Dinic's maximum flow algorithm and the
blocking flow version of refine. Whereas the former finds blocking flows in layered
networks, the latter must find blocking flows in acyclic networks, an apparently
harder task. Although for sequential computation the acyclic case seems to be
no harder than the layered case (the best known time bound is O(mlog(n2/m)
for both), this is not true for parallel computation. The Shiloach-Vishkin PRAM
blocking flow algorithm [93] for layered networks runs in 0(n2 log n) time using
O(n2) memory and n processors. The fastest known PRAM algorithm for acyclic
networks, due to Goldberg and Tarjan [47], runs in the same 0(n2logn) time
bound but uses O(nm) memory and m processors.

4. Strongly Polynomial Algorithms Based on Cost-Scaling

4.1 Introduction .

The question of whether the minimum-cost circulation problem has a strongly
polynomial algorithm was posed in 1972 by Edmonds and Karp [22] and resolved
only in 1984 by Tardos [96]. Her result led to the discovery of a number of
strongly polynomial algorithms for the problem [31, 38, 81]. In this chapter
we discuss several strongly polynomial algorithms based on cost scaling; in the
next, we explore capacity-scaling algorithms, including strongly polynomial ones.
Of the known strongly polynomial algorithms, the asymptotically fastest is the
capacity-scaling algorithm of Orlin [81].

We begin by describing a modification of the generalized cost-scaling method
that makes it strongly polynomial [49]. Then we describe the minimum-mean
cycle-canceling algorithm of Goldberg and Tarjan [48]. This simple algorithm is
a specialization of Klein's cycle-canceling algorithm [71]; it does not use scaling,
but its analysis relies on ideas related to cost scaling.

4.2 Fitting Price Functions and Tight Error Parameters

In order to obtain strongly polynomial bounds on the generalized cost-scaling
method, we need to take a closer look at the notion of e-optimality defined in
Section 3.2. The definition of e-optimality motivates the following two problems:

1. Given a pseudoflow / and a constant E > 0, find a price function p such
that / is e-optimal with respect to p, or show that there is no such price
function (i.e., that / is not e-optimal).

2. Given a pseudoflow /, find the the smallest e > 0 such that / is e-optimal.
For this e, we say that / is z-tight.

138 A. Goldberg, E. Tardos and R. Tarjan

The problem of finding an optimal price function given an optimal circulation is
the special case of Problem 1 with c = 0. We shall see that the first problem can
be reduced to a shortest path problem, and that the second problem requires the
computation of a cycle of minimum average arc cost.

To address these problems, we need some results about shortest paths and
shortest path trees (see e.g. [99]). Let G be a directed graph with a distinguished
source vertex s from which every vertex is reachable and a cost c(v, w) on every
arc (v, w). For a spanning tree T rooted at s, the tree cost function d : V —» R is
defined recursively as follows: d(s) = 0, d(v) = d(parent(v)) + c(parent(v),v) for
v 6 V — {s}, where parent(v) is the parent of v in T. A spanning tree T rooted at
s is a shortest path tree if and only if, for every vertex v, the path from 5 to v in T
is a minimum-cost path from s to v in G, i.e., d(v) is the cost of a minimum-cost
path from s to v.

4.2.1 Lemma (see e.g. [99]). Graph G contains a shortest path tree if and only if G
does not contain a negative-cost cycle. A spanning tree T rooted at s is a shortest
path tree if and only ifc(v,w) + d(v) > d(w) for every arc (v,w) in G.

Consider Problem 1: given a pseudoflow / and a nonnegative e, find a price
function p with respect to which / is s-optimal, or show that / is not 6-optimal.
Define a new cost function c(£) : £ — > / ? by c(£'(u, w) = c(v, w) + E. Extend the
residual graph G/ by adding a single vertex s and arcs from it to all other vertices
to form an auxiliary graph Gaux = (Vmx,Eaux) = (V (j { s } , £/U({s} x V)). Extend
c(£> to Gaux by defining c(£)(s, v) = 0 for every arc (s, v), where v e V. Note that
every vertex is reachable from 5 in Gaux-

4.2.2 Theorem. Pseudoflow f is (.-optimal if and only if Gaux (or equivalently
Gf) contains no cycle of negative c^-cost. If T is any shortest path tree of Gaux

(rooted at s) with respect to the arc cost function c'£', and d is the associated tree
cost function, then f is e-optimal with respect to the price function p defined by
p(v) =d(v) for all v € V.

Proof. Suppose / is e-optimal. Any cycle in Gaux is a cycle in G/, since vertex s
has no incoming arcs. Let F be a cycle of length / in Gaux. Then c(F) > —/£,
which implies c(£)(F) = c(F) + /£ > 0. Therefore Gaux contains no cycle of negative
c(£)-cost.

Suppose Gaux contains no cycle of negative c(c)-cost. Then, by Lemma 4.2.1,
Gaux has some shortest path tree rooted at s. Let T be any such tree and let d be
the tree cost function. By Lemma 4.2.1, c<£'(u, w) +d(v) > d(w) for all (v, w) 6 £/,
which is equivalent to c(v, w) + d(v) — d(w) > —e for all (v, w) e £/. But these
are the ooptimality constraints for the price function p = d. Thus / is £-optimal
with respect to p. D

Using Theorem 4.2.2, we can solve Problem 1 by constructing the auxiliary
graph Gaux and finding either a shortest path tree or a negative-cost cycle.
Constructing Gaux takes 0(m) time. Finding a shortest path tree or a negative-
cost cycle takes O(nm) time using the Bellman-Ford shortest path algorithm (see
e.g. [99]).

Network Flow Algorithms 139

Let us turn to Problem 2: given a pseudoflow /, find the £ such that / is
£-tight. We need a definition. For a directed graph G with arc cost function c, the
minimum cycle mean of G, denoted by u(G, c), is the minimum, over all cycles F in
G, of the mean cost of F, defined to be the total arc cost c(F) of F divided by the
number of arcs it contains. The connection between minimum cycle means and
tight error parameters is given by the following theorem, which was discovered
by Engel and Schneider [23] and later by Goldberg and Tarjan [50]:

4.2.3 Theorem [23]. Suppose a pseudoflow f is not optimal. Then f is e-tight for
e = -u(Gf,c).

Proof. Assume / is not optimal. Consider any cycle F in G/. Let the length of F
be /. For any «, let c(£) be the cost function defined above: c^(v, w) = c(v, w)+e for
(v, w) e Ef. Let £ be such that / is £-tight, and let u - u(Gj,c). By Theorem 4.2.2,
0 < c(£)(F) = c(F) + /E, i.e., c(F)// > -e. Since this is true for any cycle F, u > -E,
i.e., E > —fi. Conversely, for any cycle F, c(F)// > u, which implies c'^^F) > 0.
By Theorem 4.2.2, this implies — u > £. D

Karp [67] observed that the minimum mean cycle can be computed in 0(nm)
time by extracting information from a single run of the Bellman-Ford shortest
path algorithm. This gives the fastest known strongly polynomial algorithm
for computing the minimum cycle mean. The fastest scaling algorithm is the
O(.y/nmlog(nC))-time algorithm of Orlin and Ahuja [85]. Since we are interested
here in strongly polynomial algorithms, we shall use Karp's bound of 0(nm) as
an estimate of the time to compute a minimum cycle mean.

The following observation is helpful in the analysis to follow. Suppose / is an
£-tight pseudoflow and £ > 0. Let p be a price function such that / is £-optimal
with respect to p, and let F be a cycle in G/ with mean cost — e.. Since -e is
a lower bound on the reduced cost of an arc in Gf, every arc of F must have
reduced cost exactly —£.

4.3 Fixed Arcs

The main observation that leads to strongly polynomial cost-scaling algorithms
for the minimum-cost circulation problem is the following result of Tardos |96]:
if the absolute value of the reduced cost of an arc is significantly greater then
the current error parameter e, then the value of any optimal circulation on this
arc is the same as the value of the current circulation. The following theorem is
a slight generalization of this result (to get the original result, take e' = 0). This
theorem can be used in two ways. The first is to drop the capacity constraint for
an arc of large reduced cost. This approach is used in [96]. The second, discussed
below, is to consider the arcs that have the same flow value in every E-optimal
circulation for the current value of the error parameter e and to notice that the
flow through these arcs will not change. This approach is used in [49, 48].

4.3.1 Theorem [96]. Let e > 0, e' > 0 be constants. Suppose that a circulation f
is e-optimal with respect to a price function p, and that there is an arc (v, w) G £

140 A. Goldberg, E. Tardos and R. Tarjan

such that \cp(v,w)\ > n(c + e'). Then, for any t! -optimal circulation /'. we have
f (v , w) =f'(v,w)

Proof. By antisymmetry, it is enough to prove the theorem for the case cp(v, w) >
n(e + e'). Let /' be a circulation such that f ' (v , w) ^ f (v , w) . Since cp(v, w) > c, the
flow / through the arc (v, w) must be as small as the capacity constraints allow,
namely — u(w, v), and therefore f'(v, w) =£ f (v , w) implies f'(v, w) > f(v,w). We
show that /' is not e'-optimal, and the theorem follows.

Consider G> = {(x,y) e E \ f ' (x , y) > f (x , y) } . Note that G> is a subgraph of
Gf, and (v, w) is an arc of G>. Since / and /' are circulations, G> must contain a
simple cycle F that passes through (v, w). Let / be the length of F. Since all arcs
of F are residual arcs, the cost of F is at least

-(l- l)e > n(e + e') - (n - ne.

Now consider the cycle F obtained by reversing the arcs on F. Note that F is
a cycle in G< = {(x,y) e E\f'(x,y) < f (x , y) } and is therefore a cycle in Gf. By
antisymmetry, the cost of F is less than — ne' and thus the mean cost of F is less
than — e'. But Theorem 4.2.3 implies that /' is not E' -optimal. D

To state an important corollary of Theorem 4.3.1, we need the following
definition. We say that an arc (v, w) e £ is e-fixed if the flow through this arc is
the same for all e-optimal circulations.

4.3.2 Corollary [49]. Let £ > 0, suppose f is e-optimal with respect to a price
function p, and suppose that (v,w) is an arc such that \cp(v,w)\ > 2ne. Then (v,w)
is e-fixed.

Define F£ to be the set of £-fixed arcs. Since the generalized cost-scaling
method decreases E, an arc that becomes e-fixed stays s-fixed. We show that when
e decreases by a factor of 2n, a new arc becomes e-fixed.

4.3.3 Lemma. Assume e' < ^. Suppose that there exists an e-tight circulation f .
Then /v properly contains F£.

Proof. Since every E'-optimal circulation is £-optimal, we have F£ £ F^. To show
that the containment is proper, we have to show that there is an £'-fixed arc that
is not £-fixed.

Since the circulation / is e-tight, there exists a price function p such that / is
£-optimal with respect to p, and there exists a simple cycle F in G/ every arc of
which has reduced cost — e. (See Section 4.2.) Since increasing / along F preserves
£-optimality, the arcs of F are not e-fixed.

We show that at least one arc of F is e'-fixed. Let /' be a circulation that is
e'-optimal with respect to some price function p'. Since the mean cost of F is — e,
there is an arc (v, w) of F with Cp>(v, w) < — e <; — 2m'. By Corollary 4.3.2, the arc
(v, w) is e'-fixed. D

In the next section we show how to use this lemma to get a strongly polynomial
bound for a variation of the generalized cost-scaling method.

Network Flow Algorithms 141

4.4 The Strongly Polynomial Framework

The minimum-cost circulation framework of Section 3.3 has the disadvantage
that the number of iterations of refine depends on the magnitudes of the costs.
If the costs are huge integers, the method need not run in time polynomial in
n and m; if the costs are irrational, the method need not even terminate. In
this section we show that a natural modification of the generalized cost-scaling
approach produces strongly polynomial algorithms. The running time bounds we
derived for algorithms based on the approach of Section 3.3 remain valid for the
modified approach presented in this section. The main idea of this modification
is to improve e periodically by finding a price function that fits the current
circulation better than the current price function. This idea can also be used to
improve the practical performance of the method.

The changes needed to make the generalized cost-scaling approach strongly
polynomial, suggested by Lemma 4.3.3, are to add an extra computation to the
main loop of the algorithm and to change the termination condition. Before
calling refine to reduce the error parameter E, the new method computes the
value A and a price function p* such that the current circulation / is A-tight
with respect to pi. The strongly polynomial method is described on Figure 4.1.
The value of A and the price function px in line (») are computed as described
in Section 4.2. The algorithm terminates when the circulation / is optimal, i.e.,

procedure min-cost(V,E,u,c);
[init ial ization]
e<- C;
Vt>, p(t>)-0;
V(u ,w)e£ , f(v,w) «-0;
[loop]
while E > 0 do begin

(*) find). and p; such that / is ,1-tight with respect to
if /I > 0 then (£,/,p) <- refined, f , pi)
else returnl/);

end.

Fig. 4.1 The strongly polynomial algorithm

The time to perform line (*) is 0(nm). (See Section 4.2.) Since all the
implementations of refine that we have considered have a time bound greater
than O(nm), the time per iteration in the new version of the algorithm exceeds the
time per iteration in the original version by less than a constant factor. Since each
iteration at least halves E, the bound of O(log(nC)) on the number of iterations
derived in Chapter 3 remains valid, assuming that the costs are integral. For
arbitrary real-valued costs, we shall derive a bound of O(mlogn) on the number
of iterations.

142 A. Goldberg, E. Tardos and R. Tarjan

4.4.1 Theorem [48]. The total number of iterations of the while loop in procedure
min-cost is O(mlogn) .

Proof. Consider a time during the execution of the algorithm. During the next
O(logn) iterations, either the algorithm terminates, or the error parameter is
reduced by a factor of 2n. In the latter case, Lemma 4.3.3 implies that an arc
becomes fixed. If all arcs become fixed, the algorithm terminates in one iteration
of the loop. Therefore the total number of iterations is O(mlogn). D

The best strongly polynomial implementation of the generalized cost-scaling
method [49], based on the dynamic tree implementation of refine, runs in
O(nm2 Iog(n2/m) logn) time.

4.5 Cycle-Canceling Algorithms

The ideas discussed in Sections 4.2 - 4.4 are quite powerful. In this section we use
these ideas to show that a simple cycle-canceling algorithm of Klein [71] becomes
strongly polynomial if a careful choice is made among possible cycles to cancel.
Klein's algorithm consists of repeatedly finding a residual cycle of negative cost
and sending as much flow as possible around the cycle. This algorithm can run
for an exponential number of iterations if the capacities and costs are integers,
and it need not terminate if the capacities are irrational [26]. Goldberg and
Tarjan [48] showed that if a cycle with the minimum mean cost is canceled at
each iteration, the algorithm becomes strongly polynomial. We call the resulting
algorithm the minimum-mean cycle-canceling algorithm.

The minimum-mean cycle-canceling algorithm is closely related to the shortest
augmenting path maximum flow algorithm of Edmonds and Karp [22]. The
relationship is as follows. If a maximum flow problem is formulated as a
minimum-cost circulation problem in a standard way, then Klein's cycle-canceling
algorithm corresponds exactly to the Ford-Fulkerson maximum flow algorithm,
and the minimum-mean cycle-canceling algorithm corresponds exactly to the
Edmonds-Karp algorithm. The minimum-mean cycle-canceling algorithm can
also be interpreted as a steepest descent method using the L\ metric.

For a circulation / we define «(/) to be zero if / is optimal and to be the
unique number e' > 0 such that / is e'-tight otherwise. We use £(/) as a measure
of the quality of /. Let / be an arbitrary circulation, let E = e(/), and let p be
a price function with respect to which / is e-optimal. Holding e and p fixed, we
study the effect on E(/) of a minimum-mean cycle cancellation that modifies /.
Since all arcs on a minimum-mean cycle have negative reduced cost with respect
to p, cancellation of such a cycle does not introduce a new residual arc with
negative reduced cost, and hence £(/) does not increase.

4.5.1 Lemma. A sequence of m minimum-mean cycle cancellations reduces E(/) to
at most (1 — \/ri)£, i.e., to at most 1 — \/n times its original value.

Network Flow Algori thms 14.1

Proof. Let p a price function such that / is £-tight with respect to p. Holding
£ and p fixed, we study the effect on the admissible graph GA (with respect to
the circulation / and price function p) of a sequence of m minimum-mean cycle
cancellations that modify /. Ini t ial ly every arc (v, w) e EA satisfies cp(v, w) > -t.
Canceling a cycle all of whose arcs are in EA adds only arcs of positive reduced
cost to Ef and deletes at least one arc from EA. We consider two cases.

Case 1 : None of the cycles canceled contains an arc of nonnegative reduced
cost. Then each cancellation reduces the size of EA, and after m cancellations EA

is empty, which implies that / is optimal, i.e., e(f) = 0. Thus the lemma is true in
this case.

Case 2: Some cycle canceled contains an arc of nonnegative reduced cost. Let
F be the first such cycle canceled. Every arc of F has a reduced cost of at least
— e, one arc of F has a nonnegative reduced cost, and the number of arcs in F
is at most n. Therefore the mean cost of F is at least —(1 — l/n)e. Thus, just
before the cancellation of F, £(/) < (1 - l/n)e by Theorem 4.2.3. Since £(/) never
increases, the lemma is true in this case as well. D

Lemma 4.5.1 is enough to derive a polynomial bound on the number of
iterations, assuming that all arc costs are integers.

4.5.2 Theorem [48]. If all arc costs are integers, then the minimum-mean cycle-
canceling algorithm terminates after O(rnnlog(nC)) iterations.

Proof. The lemma follows from Lemmas 3.2.1 and 4.5.1 and the observation that
the initial circulation is C-optimal. D

To obtain a strongly polynomial bound, we use the ideas of Section 4.3. The
proof of the next theorem uses the following inequality:

_ for

2n
2.

4.5.3 Theorem [48]. For arbitrary real-valued arc costs, the minimum-mean cycle-
canceling algorithm terminates after 0(nm2\ogn) cycle cancellations.

Proof. Let k = m(nf lnn +11). Divide the iterations into groups of k consecutive
iterations. We claim that each group of iterations fixes the flow on a distinct arc
(v,w), i.e., iterations after those in the group do not change f(v,w). The theorem
is immediate from the claim.

To prove the claim, consider any group of iterations. Let / be the flow
before the first iteration of the group, /' the flow after the last iteration of the
group, E = £(/), E' = £(/'), and let p' be a price function for which /' satisfies
the e'-optimality constraints. Let F be the cycle canceled in the first iteration of
the group. By Lemma 4.5.1, the choice of k implies that E' < E(! - I)»r i n»-Hl <

144 A. Goldberg, E. Tardos and R. Tarjan

5;. Since the mean cost of P is —e, some arc on F, say (u, w), must have
<y(u, w) < — £ < —2ne'. By Corollary 4.3.2, the flow on (t>, w) will not be changed
by iterations after those in the group. But f (v , w) is changed by the first iteration
in the group, which cancels F. Thus each group fixes the flow on a distinct arc. D

4.5.4 Theorem [48]. The minimum-mean cycle-canceling algorithm runs in 0(n2m*
log n) time on networks with arbitrary real-valued arc costs, and in 0(n2m2 min{log
(nC),m\ogn}) time on networks with integer arc costs.

Proof. Immediate from Theorems 4.5.2 and 4.5.3. D

Although the minimum-mean cycle-canceling algorithm seems to be of mostly
theoretical interest, it has a variant that is quite efficient. This variant maintains
a price function and, instead of canceling the minimum-mean-cost residual cycle,
cancels residual cycles composed entirely of negative reduced cost arcs; if no
such cycle exists, the algorithm updates the price function to improve the error
parameter e. An implementation of the algorithm using the dynamic tree data
structure runs in O(nmlognlog(nC)) time. See [48] for details.

The techniques used to analyze the minimum-mean cycle-canceling algorithm
also provide an approach to making the primal network simplex algorithm for
the minimum-cost circulation problem more efficient. Tarjan [100] has discovered
a pivot rule that gives a bound of O(ni'ogn+0(l)) on the number of pivots and
the total running time. This is the first known subexponential time bound. For
the extended primal network simplex method in which cost-increasing as well as
cost-decreasing pivots are allowed, he has obtained a strongly polynomial time
bound. In contrast, the dual network simplex method is known to have strongly
polynomial variants, as mentioned in Chapter 5.

Barahona and Tardos [7] have exhibited another cycle-canceling algorithm
that runs in polynomial time. Their algorithm is based on an algorithm of
Weintraub [104], which works as follows. Consider the improvement in the
cost of a circulation obtained by canceling a negative cycle. Since a symmetric
difference of two circulations can be decomposed into at most m cycles, canceling
the cycle that gives the best improvement reduces the difference between the
current and the optimal values of the cost by a factor of (1 - 1/m). If the
input data is integral, only a polynomial number of such improvements can
be made until an optimal solution is obtained. Finding the cycle that gives
the best improvement is NP-hard, however. Weintraub shows how to find a
collection of cycles whose cancellation reduces the cost by at least as much
as the best improvement achievable by canceling a single cycle. His method
requires a superpolynomial number of applications of an algorithm for the
assignment problem. Each such application yields a minimum-cost collection of
vertex-disjoint cycles. Barahona and Tardos [7] have shown that the algorithm
can be modified so that the required collection of cycles is found in at most
m assignment computations. The resulting minimum-cost circulation algorithm
runs in polynomial time.

Network Flow Algorithms 145

5. Capacity-Scaling Algorithms

5.1 Introduction

In this chapter, we survey minimum-cost circulation algorithms based on capacity
scaling. We concentrate on two algorithms: the first polynomial-time algorithm,
that of Edmonds and Karp [22], who introduced the idea of scaling, and the
algorithm of Orlin [81]. The latter is an extension of the Edmonds-Karp algorithm
and is the fastest known strongly polynomial algorithm.

In this chapter we shall consider the (uncapacitated) transshipment problem, •
which is equivalent to the minimum-cost circulation problem. This simplifies the
presentation considerably. We begin by describing a generic augmenting path
algorithm, which we call the minimum-cost augmentation algorithm, that is the
basis of most capacity-scaling algorithms. The algorithm is due to Jewel [62],
Busacker and Gowen [14], and Iri [59]. The use of dual variables as de-
scribed below was proposed independently by Edmonds and Karp [22] and
Tomizawa [101]. The idea of the algorithm is to maintain a pseudoflow / that
satisfies the complementary slackness constraints while repeatedly augmenting
flow to gradually get rid of all excesses. Two observations justify this method:
(1) augmenting flow along a minimum-cost path preserves the invariant that the
current pseudoflow has minimum cost among those pseudoflows with the same
excess function; (2) a shortest path computation suffices both to find a path
along which to move flow and to find price changes to preserve complementary
slackness.

The algorithm maintains a pseudoflow / and a price function p such that
cp(v, w) > 0 for every residual arc (v, w). The algorithm consists of repeating the
augmentation step, described in Figure 5.1, until every excess is zero. Then the
current pseudoflow is optimal.

The correctness of this algorithm follows from the observation that the price
transformation in the augment step preserves complementary slackness and makes
the new reduced cost of any minimum-cost path from s to t equal to zero. One
iteration of the augment step takes time proportional to that required by a
single-source shortest path computation on a graph with arcs of non-negative
cost. The fastest known strongly polynomial algorithm for this computation is
Fredman and Tarjan's implementation [29] of Dijkstra's algorithm, which runs in

augments, t).
Applicability: e(s) > 0 and e(t) < 0.
Action: For every vertex v, compute n(v), the minimum reduced cost
of a residual path from s to v. For every vertex i>, replace p(v) by
p(v) + n(v). Move a positive amount of flow from s to r along a path
of minimum reduced cost.

Fig. 5.1 The augmentation step

146 A. Goldberg, E. Tardos and R Tarjan

O(n logn + m) time. The problem can also be solved in O(m log log C) time [86] or
O(n-J\ogC + m) time [2], where C is the maximum arc cost. Since we are mainly
interested here in strongly polynomial algorithms, we shall use O(n\ogn + m) as
our estimate of the time for each augment step.

Remark. The only reason to maintain prices in this algorithm is to simplify the
minimum-cost path computations by guaranteeing that each such computation
is done on a graph all of whose arc costs are non-negative. If prices are not
maintained in this way, each shortest path computation takes 0(nm) time using
the Bellman-Ford algorithm (see e.g. [99]).

5.2 The Edmonds-Karp Algorithm

The overall running time of the augmentation algorithm depends on the number
of augmentation steps, which cannot be polynomially bounded without specifying
their order more precisely. To impose an efficient order, Edmonds and Karp
introduced the idea of capacity scaling, which Orlin [82] in his description of
Edmonds-Karp algorithm reinterpreted as excess scaling. We shall present a
modification of Orlin's version of the Edmonds-Karp algorithm.

The algorithm maintains a scaling parameter A such that the flow on every
arc is an integer multiple of A. For a given pseudoflow / and value of the scaling
parameter A, we denote the sets of vertices with large excesses and large deficits
as follows:

(5.1)
S/(A) = {v e V : ef(v) > A};

7>(A) = {v e V : ef(v) < -A}.

The algorithm consists of a number of scaling phases. During a A-scaling
phase the residual capacity of every arc is an integer multiple of A. The algorithm
chooses vertices s e S/(A/2), t e Ty(A/2), performs augment(s, t), which sends
A units of flow along a minimum-cost path from s to t, and repeats such
augmentations until either S/(A/2) or T/(A/2) is empty. Note that this can create
a deficit in place of an excess, and vice versa. Vertices with the new excesses
and deficits, however, are not in S/(A/2) \J 7/(A/2). Then the algorithm halves A
and begins a new scaling phase. The initial value of A is 2flogDl. The algorithm
terminates after the 1-scaling phase, assuming all supplies are integral. Figure 5.2
provides a detailed description of a phase of the algorithm.

The following lemma follows from the description of the algorithm.

5.2.1 Lemma. During a ^-scaling phase, the residual capacity of every arc is an
integer multiple of A.

5.2.2 Lemma. Let f be the pseudoflow at the end of a 2A-scaling phase. If
S/'(A) = 0, then there are at most |S/'(A/2)| flow augmentations during the A-
scaling phase. An analogous statement is true if 7y(A) = 0 at the end of a 2A-
scaling phase.

Network Flow Algorithms 147

while S,(A/2) + 0 and 7>(A/2) + 0 do begin
Choose s € S/(A/2) and t 6 T/(A/2). Perform augment (s, t), sending
A units of flow along the augmenting path selected.

end;

Fig. 5.2 A phase of the Edmonds-Karp Algorithm.

Proof. By assumption, S/<(A) = 0. Therefore, for every vertex v € V, e/(i>) < A
during the A-scaling phase. This implies that pushing A units of flow along a
path from s 6 S/(A/2) to t € T|(A/2) removes s from S/(A/2). Note that since
ef(v) < -A/2 for v e T(A/2), vertices with new excesses are not in S/ (A/2). D

There are [log^l phases, each of which consists of up to n single-source
shortest path computations on networks with non-negative arc costs. Thus we
have the following results for networks with integral supplies:

5.2.3 Theorem [22]. The Edmonds-Karp algorithm solves the transshipment problem
in O((nlogD) (nlogn -I- m)) time, and the minimum-cost circulation problem in
O((mlog U)(nlogn + m)) time.

The excess-scaling idea can be combined with the idea of augmenting along
approximately minimum-cost paths rather than exactly minimum-cost paths. Ap-
proximately minimum-cost paths can be defined using the e-optimality notion
discussed in Chapter 3. An appropriate combination of these ideas yields the
double scaling algorithm of Ahuja, Goldberg, Orlin, and Tarjan [1]. An im-
plementation of this algorithm based on dynamic trees has a time bound of
O(nm(loglog U) log(nC)) for the minimum-cost circulation problem.

5.3 Strongly Polynomial Algorithms

After Tardos [96] discovered the first strongly polynomial algorithm, Fujishige
[31] and independently Orlin [82] developed more efficient strongly polynomial
algorithms. Orlin's algorithm [81], that is the main focus of this section, is an
extension of these algorithms. These algorithms are based on the method of
Section 5.2 and the following dual version of Theorem 4.3.1.

5.3.1 Theorem [31, 82]. Let f be a pseudoflow, and let p be a price function such that
the complementary slackness conditions are satisfied and f (v , w) > Yivxf(v)>o\ef(v)\-
Then every optimal price function p' satisfies cf- (v, w) = 0.

Proof. Let p' be an optimal price function, and let /* be a corresponding
optimal pseudoflow. Assume by way of contradiction that cy (w, v) ^ 0. Define
the pseudoflow /' by f ' (x , y) = f (x , y) — f'(x,y) (i.e., we can obtain an optimal
pseudoflow by augmenting / by /'). The Decomposition Theorem (Theorem 1.7.2)
implies that /' can be decomposed into flows along a collection of cycles and

148 A. Goldberg, E. Tardos and R. Tarjan

a collection of paths from vertices with excess to vertices with deficits (both
excesses and deficits are with respect to /). Furthermore, the Decomposition
Theorem also implies that for any arc (x,y) that is not on one of the cycles,

ITferM *£.»,«**•/(«)•
The arcs on the cycles of the decomposition are in Ef, and the arcs opposite

to the ones on the cycles are in E f . This implies that the cycles have zero cost,
and that every arc on the cycles must have zero reduced cost with respect to both
p and p'. We have assumed that cp-(v, w) =£ 0; therefore (w, v) cannot be on such
a cycle. Thus f ' (w , v) < ̂ tM>0ef(v) and thus f'(v,w) > 0. But f ' (v , w) > 0
and cp-(v, w) =fc 0 contradict the complementary slackness constraint. D

The idea behind the strongly polynomial algorithms based on capacity-scaling
is to contract the arcs satisfying the condition of Theorem 5.3.1. Let / and p
be a pseudoflow and a price function, respectively, and let (v, w) be an arc
satisfying the condition of Theorem 5.3.1. The reduced cost function cp defines
an equivalent problem with cp(v, w) = 0. By the above theorem the optimal
prices of the vertices v and w are the same. Define a transshipment problem on
the network formed by contracting the arc (v, w), with cost function cp, capacity
function u, and demand function d such that the demand of the new vertex is
d(v) + d(w).

5.3.2 Theorem. For any optimal price function p' for the new problem, the price
function p'(r) = p(r) + p'(r) for r e V (with p'(v) = p'(w) defined to be the price
of the new vertex) is optimal for the original problem.

Proof. The optimal price function is the optimal solution of a linear program, the
linear programming dual of the minimum-cost flow problem. The price function
P' = P + P* is tne optimal solution of same linear program with the additional
constraint c(v, w) + p'(v) -p'(w) = 0. By Theorem 5.3.1, the two linear programs
have the same set of optimal solutions. D

We shall describe a simple strongly polynomial algorithm based on this idea.
It is a variation of Fujishige's algorithm [31], though our description is simplified
by using ideas from [81]. One iteration of the algorithm consists of running
the Edmonds-Karp algorithm for the first 21ogn scaling phases starting with
A = maX|,ei/ \d(v)\ (we cannot find the power of two used by the Edmonds-Karp
algorithm in strongly polynomial time), and then contracting all arcs that satisfy
the condition of Theorem 5.3.1. The next iteration considers the contracted
network. We shall prove that each iteration will contract at least one arc.
The algorithm terminates when the current pseudoflow is a feasible solution.
Theorem 5.3.2 guarantees that the price function found at this point is optimal.
Given an optimal price function, the optimal flow can be found by a single
maximum flow computation. (See Figure 5.3 for a more detailed description.)

The following theorem implies that at least one arc is contracted at each
iteration of the inner loop.

Network Flow Algorithms 149

Step 1 Run the Edmonds-Karp algorithm for the first [2 logo] scaling phases with
cost function cp, starting with A = maxKy \d(v)\. Let /' be the pseudoflow and let p'
be the price function found by the algorithm.

Step 2 Contract every arc (v,w) with \f(v, w)\ > nA and update the price function
by setting p(v) «— p(u) + p'(v) for all v e V (where all vertices v e V contracted into
the same vertex v' of the current network have the same price p'(v) = p'(v')).

Fig. S3 The inner loop of the simple strongly polynomial algorithm.

5.3.3 Theorem [81]. Let f and A be the pseudoflow and the scaling parameter at
the end of an iteration of the algorithm of Figure 5.3. Then Xuec le/(y)l < "A-
Furthermore, iff is not feasible, then there exists an arc (v,w) with \f(v,w)\ > nA.

Proof. After the A-scaling phase either S/(A/2) or Ty(A/2) is empty. For a
pseudoflow /, the excesses sum to zero. Therefore Xuef le/(u)l < "A. Also, every
excess is less than nA. After [21ogn] scaling phases A < (max,vey |d(w)|) -n~2. For
a vertex v whose demand has the maximum absolute value this implies that

(5.2) > \d(v)\ - n^ > n(n -

Consequently, at least one arc incident to v carries at least nA flow. D

One iteration takes 0(n(nlog/i + m)logn) time. Each iteration contracts at
least one arc, and therefore there are at most n iterations.

5.3.4 Theorem. The algorithm of Figure 5.3 solves the transshipment problem in
O(n2 logn(nlogn + m)) time, and the minimum-cost circulation problem in
O(m2logn(nlogn + m)) time.

This simple algorithm wastes a lot of time by throwing away the current flow
after each contraction. If there are several vertices with demand close to the
maximum then it might make sense to run somewhat more than 21ogn scaling
phases. The proof of Theorem 5.3.3 would then apply to more than one vertex,
and more than one arc could be contracted in an iteration. This idea does
not help much if there are not enough vertices with close-to-maximum demand.
On the other hand, by Lemma 5.2.2 the number of shortest path computations
during a phase can be bounded in terms of the number of vertices with relatively
large demand (it is bounded either by |S(A/2)| or by |T(A/2)|). One could try
to find a point for stopping the scaling algorithm that balances the number of
shortest path computations done and the number of arcs contracted.

Galil and Tardos [38] developed an O(n2(nlog +m) logn)-time minimum-cost
circulation algorithm based on this idea. In fact, the balancing technique of Galil

150 A. Goldberg, E. Tardos and R. Tarjan

Step I Let A = maxwl, \d(v)\. If A = 0 then STOP.
Step 2 while S/(A/2) ^ 0 and 7>(A/2) ^ 0 do begin

Choose s e S/(A/2) and I e 77(A/2). Perform augm*>m(s, r), sending
A units of flow along the augmenting path selected. Contract every
arc (v, w) with f (v , w) > 4nA.

end.
Step 3 If / is zero on all uncontracted arcs go to Step 1, otherwise let A = A/2

and go to Step 2.

Fig. 5.4 Orlin's Algorithm

and Tardos [38], together with Orlin's [81] proof of Theorem 5.3.3, can be used
to give an 0(n(n\ogn + m)logn)-time algorithm for the transshipment problem.
Instead of pursuing this approach further, however, we shall present a variant
of a much simpler algorithm due to Orlin [81] that has same efficiency and does
not rely on delicate balancing. This algorithm contracts arcs during the scaling
phases, without starting the scaling from scratch after each contraction; the
algorithm finds an optimal flow directly, without using an optimal price function.
The algorithm is a modification of the Edmonds-Karp algorithm, but runs in
O(nlogn) iterations instead of the O(nlogD) iterations of the Edmonds-Karp
algorithm.

Orlin's algorithm runs the Edmonds-Karp scaling algorithm starting with
A = maxug^ \d(v)\ and contracts all arcs that carry at least 4nA flow. The
scaling algorithm continues as long as the current pseudoflow is non-zero on
some uncontracted arc. When the pseudoflow is zero on every arc, the scaling is
restarted by setting A to be the maximum absolute value of a demand. Roughly
speaking, a vertex v is the start of at most 21ogn shortest path computations
during the algorithm. For a vertex v of the original graph, this follows from the
fact that v ^ S/(A) U 7/(A) unless \d(v)\ > A, and therefore an arc incident to v
will be contracted at most 2 log n scaling phases after v first served as a starting
vertex. (See the proof of Theorem 5.3.3.) This may not be true for the contracted
vertices, however. A vertex created by a contraction may have very small demand
relative to its current excess.

We say that a vertex v is active if v 6 S/(A/2)uT/(A/2). A vertex v is activated
by a A-scaling phase if v is not active at the end of the 2A-scaling phase, and
it becomes active during the A-scaling phase (i.e., either it becomes active at the
beginning of the phase or the vertex is created by contraction during the phase).
We can prove the following lemma using a proof similar to that of Lemma 5.2.2.

5.3.5 Lemma. The number of shortest path computations during a phase is bounded
by the number of vertices activated by the phase.

5.3.6 Theorem. A vertex can be activated at most \2 log n] + 1 times before it is
contracted.

Network Flow Algorithms 151

Proof. A vertex can be activated once due to contraction. When a vertex v is
activated for the second time, it must already exist at the end of the previous
scaling phase, when it was not active. Let A be the scaling parameter in the
phase when v is activated for the second time. At the beginning of this phase,
A/2 < |e/(u)| < A. But d(v) — e/(u) is an integer multiple of 2A. This implies that
A/2 < \ef(v)\ < \d(v)\. After O(logn) more scaling phases the scaling parameter
will be less than \d(v)\/4n2. Using an argument analogous to the proof of
Theorem 5.3.3 we can conclude that some arc incident to v is contracted. D

The previous lemma and theorem bound the number of shortest path com:

putations during the algorithm. All other work done is linear per scaling phase.
At least one arc is contracted in each group of O(logn) scaling phases. Therefore,
there are at most O(nlogn) scaling phases.

5.3.7 Theorem [81]. Orlin's algorithm solves the transshipment problem in
O(nlogmin{n,D}(n\ogn + m)) time, and the minimum-cost circulation problem in
O(mlogmin{n, U}(n\ogn + m)) time.

Remark. In contrast to the simpler strongly polynomial algorithm discussed
earlier, Orlin's algorithm constructs an optimal pseudoflow directly, withoftt first
constructing an optimal price function. To see this, consider the amount of
flow moved during the A-scaling phase for some value A. Lemma 5.3.f gives
a 2«A bound. Suppose an arc is contracted during the A-scaling phase. The
overall amount of flow that is moved after this contraction can be bounded by
4nA. Therefore the pseudoflow constructed by the algorithm is feasible in the
uncontracted network.

Orlin [82] has observed that capacity scaling ideas can be used to guide pivot
selection in the dual network simplex algorithm for the transshipment problem.
More recently Orlin, Plotkin and Tardos (personal communication, 1989) have
obtained an 0(wnlogmin(n, D)) bound on the number of pivots based on such a
pivot selection strategy.

6. The Generalized Flow Problem

6.1 Introduction

The generalized flow problem models the following situation in financial analysis.
An investor wants to take advantage of the discrepancies in the prices of securities
on different stock exchanges and of currency conversion rates. His objective is
to maximize his profit by trading on different exchanges and by converting
currencies. The generalized flow problem, considered in this chapter, models
the above situation, assuming that a bounded amount of money is available
to the investor and that bounded amounts of securities can be traded without
affecting the prices. Vertices of the network correspond to different currencies
and securities, and arcs correspond to possible transactions.

152 A. Goldberg, E. Tardos and R. Tarjan

The generalized flow problem was first considered by Jewell [62], This problem
is very similar to the minimum-cost circulation problem, and several of the early
minimum-cost circulation algorithms have been adapted to this problem. The first
simple combinatorial algorithms were developed by Jewell [62] and Onaga [80].
These algorithms are not even pseudopolynomial, however, and for real-valued
data they need not terminate. Several variations suggested in the early 70's
result in algorithms running in finite (but exponential) time. The paper by
Truemper [102] contains an excellent summary of these results.

The generalized flow problem is a special case of linear programming, and
therefore it can be solved in polynomial time using any general-purpose linear
programming algorithm, such as the ellipsoid method [70] and the interior-
point algorithms [66, 89]. Kapoor and Vaidya [65] developed techniques to
use the structure of the matrices that arise in linear programming formulations
of network flow problems to speed up interior-point algorithms. The first two
polynomial-time combinatorial algorithms were developed by Goldberg, Plotkin,
and Tardos [43]. We shall review one of their algorithms in detail and sketch the
other one.

The current fastest algorithm for the generalized flow problem, due to Vaidya,
is based on an interior-point method for linear programming and runs in
0(n2m'5log(«B)) time [103]. This algorithm combines the ideas from the paper
of Kapoor and Vaidya [65] with the current fastest linear programming algo-
rithm (which uses fast matrix multiplication). The two combinatorial algorithms
due to Goldberg, Plotkin and Tardos [43] run in O(mn2(m + n logn) lognlogB)
and 0(m2n2 lognlog2B) time, respectively. More recently Maggs (personal
communication, 1989) improved the latter bound through better balancing to
0

6.2 Simple Combinatorial Algorithms

Jewell [62] and Onaga [79] suggested solving the generalized flow problem by
using adaptations of augmenting path algorithms for the maximum flow and
minimum-cost circulation problems. Theorem 6.3.4 is the basis of Onaga's
augmenting path algorithm for the restricted problem. Starting from the zero
flow, this algorithm iteratively augments the flow along a flow-generating cycle in
the residual graph, thereby increasing the excess at the source. The structure of
the restricted problem makes it possible to find the most efficient flow-generating
cycle, i.e., the residual flow-generating cycle with highest-gain. The highest-gain
cycle consists of an arc (r, s) and a highest-gain simple path from s to r for some
vertex r. The highest-gain simple path to r is the shortest path, if the length of
each arc (v, w) is defined as l(v, w) = — log y(v, w). Such a shortest path exists since
deleting the arcs entering the source from the residual graph of the initial zero
flow yields a graph with no negative cycles. The main observation of Onaga is that
if the augmentation is done using the most-efficient flow-generating cycle, then
all flow-generating cycles in the residual graph of the resulting generalized flow
pass through the source. Onaga's algorithm iteratively augments the generalized
flow along the most efficient flow-generating cycle in the residual graph. This

Network Flow Algorithms 153

algorithm maintains the invariant that every vertex is reachable from s in the
current residual graph, a property that can be verified by induction on the number
of augmentations.

Consider the special case of a network with two distinguished vertices s,t 6 V
and with all gains other than y(t,s) and y(s, t) equal to one. The generalized
flow problem in this network is equivalent to the maximum flow problem, and
Onaga's algorithm specializes to the Ford-Fulkerson maximum flow algorithm.
Consequently, the algorithm does not run in finite time.

The next algorithm we describe uses a maximum flow computation as a sub-
routine. To describe this algorithm, we need to introduce a relabeling technique
of Glover and Klingman [39], This technique can be motivated as follows. Recall
the financial analysis interpretation of the generalized flow problem, in which
vertices correspond to different securities or currencies, and arcs correspond to
possible transactions. Suppose one country decides to change the unit of cur-
rency. (For example, Great Britain could decide to introduce the penny as the
basic currency unit, instead of the pound, or Italy could decide to erase a couple
of O's at the end of its bills.) This causes an appropriate update of the exchange
rates. Some of the capacities change as well (a million !£ limit on the t£ - DM
exchange would now read as a limit of 100 million pennies). It is easy to see that
such a relabeling defines an equivalent problem. Such a relabeling can be used,
for example, to normalize local units of currency to current market conditions.

To formally define the relabeled problem, let /i(t>) € R+ denote the number of
old units corresponding to each new unit at vertex v e V. Given a function /J, we
shall refer to n(v) as the label of v.

R+ and a network N = (V,E,y,u), the
), where the relabeled capacities and the

u(v, w)/n(v)

y(v,

Definition: For a function n : V
relabeled network is N,, = (V, E,y
relabeled gains are defined by

For a generalized pseudoflow g and a labeling /*, the generalized pseudoflow
corresponding to g in the relabeled network is g^v, w) = g(v, w)//j.(v), the relabeled
residual capacity is defined by ue^(v,w) = (u(v,w)—g(v,w))/fj.(v), and the relabeled
excess by egtll(v) =eg(t>)//i(u). The corresponding pseudoflows have the same
residual graph.

Now we present a canonical relabeling. The residual graph of a generalized
pseudoflow g can be canonically relabeled if every vertex v e V is reachable from
the source and every flow-generating cycle in the residual graph contains the
source. For a vertex v € V, the canonical label n(v) is defined to be the gain of a
highest-gain simple path from s to v in the residual graph. That is, one new unit
corresponds to the amount of flow that can reach the vertex v if one old unit
of flow is pushed along a most-efficient simple path in the residual graph from
s to v, ignoring capacity restrictions along the path. Observe that in a restricted
network, the highest-gain paths from s to each other vertex can be found using
any single-source shortest path algorithm.

154 A. Goldberg, E. Tardos and R. Tarjan

Step 1 Find n, a canonical labeling from the source.
If y/if".w) ^ 1 on every arc of the residual graph of the current generalized flow g,
then STOP (the current flow is optimal).

Step 2 Let a = max(K.W|6£t y^v, w). Consider the network G' consisting of all arcs
(v,w) with y,,(v,w) = 1, and all arcs in A = {(i>,s)|y,,(t>,s) = a} and their opposites.

Find a (standard) circulation /' in G' that maximizes

XlMe/i/'^'5)' the flow into s-

Step 3 Let g' be the generalized flow corresponding to /', i.e, g'(v,w) = f ' (v , w) if
v ^ s and g'(s,v) = -yll(v,s)f'(v,s).
Update the current solution by setting g(v, w) = g(v,w) + g'(v, w)n(v) V(u, w) e E.

Fig. 6.1 Inner loop of Truemper's algorithm

6.2.1 Theorem. After a canonical relabeling, the following properties hold: Every
arc (v,w) € Eg such that w =£ s has y^v, w) < I ; there exists a path from s to
every other vertex r in the residual graph with y^v, w) = 1 for all arcs (v,w) on
the path; the most efficient flow-generating cycles each consist of an arc (r, s) € Eg

and an (s,r)-path for some r e V, such that y^v, w) = 1 along the path and
t;,w) : (v,w) € Eg).

Next we describe a simple finite algorithm, due to Truemper [102]. The
algorithm, described in Figure 6.1, is a refinement of Onaga's algorithm in which
augmentation along all of the maximum gain cycles is done simultaneously.
The algorithm maintains a generalized pseudoflow g whose residual graph has
every vertex reachable from the source and has all flow-generating cycles passing
through the source. The algorithm first canonically relabels the residual graph.
Now the highest-gain residual cycles have maximum relabeled gain on arcs
entering the source and have a relabeled gain of one on all other arcs. Consider
the subgraph induced by arcs with relabeled gain of one and arcs of maximum
relabeled gain entering the source. A circulation that maximizes the sum of
the flow on the latter arcs can be found by a maximum flow computation. This
circulation gives an augmentation of the current generalized flow g. After such an
augmentation, all gain cycles in the residual graph pass through the source, and
the maximum gain of a flow-generating cycle in the residual graph is decreased.
Therefore, this algorithm runs in finite time.

Truemper's algorithm is in some sense an analog of Jewell's [62] minimum-cost
flow algorithm, which augments the flow along all of the cheapest augmenting
paths at once using a maximum flow subroutine. Using the same network as
Zadeh [106] used for the minimum-cost flow problem, Ruhe [91] gave an example
on which Truemper's algorithm takes exponential time.

Goldberg, Plotkin, and Tardos [43] gave two algorithms, one that uses a
minimum-cost flow computation as a subroutine, and one that builds on ideas

Network Flow Algorithms 155

from several maximum and minimum-cost flow algorithms. In the next section
we describe the first algorithm in detail and very briefly outline the second one.

6.3 Polynomial-Time Combinatorial Algorithms

The main idea of the first polynomial-time algorithm of Goldberg-Plotkin-Tardos
is best described by contrasting the algorithm with Truemper's. In each iteration,
both algorithms solve a simpler flow problem, and interpret the result as an
augmentation in the generalized flow network. Truemper's algorithm is slow
because at each iteration it considers only arcs with unit relabeled gain and some
of the arcs adjacent to the source, disregarding the rest of the graph completely.
The Goldberg-Plotkin-Tardos algorithm, which we shall call algorithm MCF,
considers all arcs. It assigns a cost c(v, w) = — logy^(y, w) to each arc (v, w) and
solves the resulting minimum-cost circulation problem (disregarding gains).

The interpretation of a pseudoflow / is a generalized pseudoflow g, such
that g(v, w) = f (v , w) if f (v , w) > 0 and g(v, w) = —y,,(w,v)f(w,v) otherwise.
In Truemper's algorithm, the interpretation of a feasible circulation on the
subnetwork G' is a feasible generalized flow on the original network. In Algorithm
MCF, however, the interpretation of a minimum-cost circulation is a generalized
pseudoflow. Arcs of the flow that have a relabeled gain of less than 1 produce
vertices with deficits in the interpretation. A connection between a pseudoflow /
and its interpretation is given by the following lemma.

6.3.1 Lemma. The residual graphs of a pseudoflow f and its interpretation g as a
generalized pseudoflow are the same.

The first iteration of the algorithm solves a minimum-cost circulation problem,
and it creates excess at the source and deficits at various other vertices. Each
subsequent iteration uses some of the excess at the source to balance the deficits
created by the previous iterations by solving a capacitated transshipment problem.
More precisely, Algorithm MCF, shown in Figure 6.2, maintains a generalized
pseudoflow g in the original (non-relabeled) network, such that the excess at
every vertex other than the source is non-positive. The algorithm proceeds in
iterations. At each iteration it canonically relabels the residual graph, solves the
corresponding capacitated transshipment problem in the relabeled network, and
interprets the result as a generalized augmentation.

The most important property of a minimum-cost pseudoflow, for this ap-
plication, is that its residual graph has no negative cycles. This implies (by
Lemma 6.3.1) that the residual graphs of the generalized pseudoflows produced
by the algorithm in Step 3 have no flow-generating cycles. The following lemma
(analogous to Lemma 1.6.1) implies that this is enough to ensure that the new
residual graph can be canonically relabeled.

6.3.2 Lemma. Let g be a generalized pseudoflow in a restricted network. If the
residual graph of Gg contains no flow-generating cycles, and the excess at every
vertex other than s is non-positive, then every vertex is reachable from s in Gg.

156 A. Goldberg, E. Tardos and R. Tarjan

Step 1 Find n, a canonical labeling of the residual graph of the general-
ized pseudoflow g. If y^v, w) < 1 on every arc of the residual graph and
VD e (V - {s}) : eg^(v) = 0, then HALT (the current flow is optimal).

Step 2 Introduce costs c(v,w) = — l o g y f (v , w) on the arcs of the network. Solve
the capacitated transshipment problem in the residual relabeled network of G with
demands d(v) = etjl(v) for v € V — {s}.

Step 3 Let g' be the interpretation of/'. Update the current solution by setting
g(v, w) = g(t), w) + g'(v, tv)/j(u) V(u, w) e E.

Fig. 6.2 Inner loop of Algorithm MCF

The relabeled gain factors are at most 1 (except for arcs entering the source in
the first iteration); therefore the flow computation creates deficits, but no excesses
at vertices other than the source. Using the decomposition of pseudoflows
(Theorem 1.7.3), one can prove that in each relabeled network there exists a
flow satisfying all the deficits. These properties are summarized in the following
lemma.

633 Lemma. For a generalized pseudoflow g that is constructed by Step 3, the
following properties hold: The residual graph of g has no flow-generating cycle;
canonical relabeling applies to the residual graph of g; all excesses, except the
excess of the source, are non-positive; the pseudoflow required in Step 2 of the next
iteration exists.

The algorithm terminates once a generalized flow has been found. Throughout
the computation the residual graph contains no flow-generating cycles; therefore
(by Theorem 1.6.2) if the algorithm ever finds a generalized flow, then this flow
is optimal.

Next we bound the number of iterations of the algorithm. Consider the
generalized pseudoflow g existing at the beginning of an iteration. Because there
are deficits but no flow-generating cycles in the residual graph, the current excess
at the source is an overestimate of the value of the maximum possible excess. It
is easy to see that, after a canonical relabeling, the sum of the deficits at all the
vertices other than the source is a lower bound on the amount of the overestimate.
We use this value, Def(g,u) = ^v^s(—^(v))< as a measure of the proximity of
a generalized pseudoflow to an optimal generalized flow. It is not too hard to
show that if Def\g,n) is smaller than L~l then the algorithm terminates in one
more iteration. (Recall that L is the product of denominators of arc gains.)

6.3.4 Theorem [43]. If Def[g,u) < L~l before Step 2 of an iteration, then the
algorithm produces a generalized flow in Step 3.

An important observation is that the labels n are monotonically decreasing
during the algorithm. The decrease in the labels is related to the price function

Network Flow Algorithms 157

associated with the minimum-cost pseudoflow computation. Let p' denote the
optimal price function associated with the pseudoflow /' found in Step 2. Assume,
without loss of generality, that p'(s) = 0.

6.3.5 Lemma. For each vertex v, the canonical relabeling in Step 1 of the next
iteration decreases the label u(v) by at least a factor o/2"p/(I>).

The key idea of the analysis is to distinguish two cases: Case 1, in which the
pseudoflow /' is along "cheap" paths, (i.e., p'(v) is small, say p'(v) < log 1.5, for
every v € K); and Case 2, in which there exists a vertex v such that p'(v) is "large"
(> log 1.5). In the first case, Def(f,tJ.) decreases significantly; in the second case,
Lemma 6.3.5 implies that at least one of the labels decreases significantly. The
label of a vertex v is the gain of the current most efficient path from s to v.
This limits the number of times Case 2 can occur. Theorem 6.3.4 can be used
to guarantee that Case 1 cannot occur too often. The following lemma provides
a tool for estimating the total deficit created when interpreting a minimum-cost
pseudoflow as a generalized pseudoflow.

6.3.6 Lemma. Let f be a pseudoflow along a simple path P from s to some other
vertex v that satisfies one unit of deficit at v. Let g' be the interpretation of f
as a generalized pseudoflow. Assume that all relabeled gains along the path p are
at most 1, and denote them by yi,...,yk- Then after augmenting by g', the unit
of deficit at v is replaced by deficits on vertices along P that sum up to at most

Proof. The deficit created at the ith vertex of the path is (1 - yt), for i = 1, . . . , fc.
Using the assumption that the gain factors along the path are at most 1, the sum
of the deficits can be bounded by

w 1

1 Vj 11=

-1. D

This lemma can be used to bound the value of Def\g, u) after an application
of Step 3. Let p' be an optimal price function associated with the pseudoflow
/', such that p'(s) = 0. Let /? = ma\vevp'(v) be the maximum price. Using
the pseudoflow decomposition theorem (Theorem 1.7.2), one can show that a
minimum-cost pseudoflow /' can be decomposed into flows along paths from the
source s to the other vertices and cycles in the residual graph of g, such that the
cost of the cycles is zero and the cost of each path ending at a vertex v is at
most p'(v). To bound the amount of deficit created by the interpretation, we shall
consider the interpretation of the flow on the cycles and the paths one-by-one.
Since the cycles consists of zero-cost arcs only, the interpretation of the flow along
these cycles does not create deficits. When interpreting flow along a path from s
to v, the deficit at v is replaced by deficits that sum to at most 2f>'(") - 1 < 2? - 1
times the deficit at v satisfied by this path. This proves the following lemma.

158 A. Goldberg, E. Tardos and R. Tarjan

6.3.7 Lemma. The value of Def\g,u) after an application of Step 3 can be bounded
by 2& — 1 times its value before the step. In particular, if p'(v) < log 1.5 for every
vertex v, then Def\g,u) decreases by a factor of 2.

The remaining difficulty is the fact that the function Def[g,u) can increase,
both when Case 2 applies in Step 3 and due to the relabeling in Step 1 (changing
the currency unit from :£? to penny increases a 5 & deficit to 500 pennies). The
increase in Def[g,u) can be related to the decrease in the labels, however. The
deficit at a vertex increases in Step 1 by a factor of a if and only if the label of
this vertex decreases by the same factor. The increase in Def[g,u) during Step 3
is bounded by 2^, where fi = maxp'(t>), by Lemma 6.3.7. By Lemma 6.3.5, this
means that u(v) for some vertex v decreases by at least /? during Step 1 of the
next iteration. Hence, in both cases, if Def\g,u) increases by a during a step,
then there exists a vertex v for which u(v) decreases by at least a during the next
execution of Step 1. Let T < B" denote an upper bound on the gain of any
simple path. The label of a vertex v is the gain of a simple path from s to v in
the residual graph. Therefore the labels are at least T~l and at most T, and
the label of a vertex cannot decrease by more than a factor of T2 during the
algorithm. This gives the following lemma.

6.3.8 Lemma. The growth of the function Def\g,u) throughout an execution of the
algorithm is bounded by a factor of To(n) = B0("2).

6.3.9 Theorem [43]. The algorithm terminates in O(n2\og,B) iterations.

Proof. The label of any vertex v is the gain of a simple path from s to v,
and it is monotonically decreasing during the algorithm. Therefore, it cannot
decrease by a constant factor more than 0(log T) times for any given vertex,
and Case 2 cannot occur more than O(nlogT) times. When Case 1 applies,
the value of Def\g,u) decreases by a factor of 2. The value of Def(g,u) is
at most 0(nBT) after the first iteration; and, by Theorem 6.3.4, the algorithm
terminates when this value decreases below L~'. Lemma 6.3.8 limits the increase
of Def[g,n) to r°(n) during the algorithm. Hence, Case 1 cannot occur more
than O(log(nBr) + nlogT +logL) = O(n2logB) times. D

To get a bound on the running time, one has to decide which algorithm to
use for computing the minimum-cost pseudoflow in Step 2. The best choice is
Orlin's 0(m(m + nlogn) logn) time algorithm, discussed in Chapter 5.

6.3.10 Theorem [43], Algorithm MCF solves the generalized flow problem using at
most O(n2m(m + n\ogn) \ogn\ogB) arithmetic operations on numbers whose size is
bounded by O(mlogB).

We conclude this section with a brief discussion of the other algorithm of [43].
The algorithm is based on ideas from two flow algorithms: the cycle-canceling
algorithm of Goldberg and Tarjan [48] described in Chapter 4, and the fat-path h
maximum flow algorithm of Edmonds and Karp [22], which finds the maximum

Network Flow Algorithms 159

flow in a network by repeatedly augmenting along a highest-capacity residual
path.

Each iteration of the algorithm starts with cycle-canceling. Canceling a flow-
generating cycle in a generalized flow network creates an excess at some vertex
of the cycle. If we cancel cycles other than the most efficient ones, the residual
graph of the resulting generalized pseudoflow will have flow-generating cycles
that do not contain the source. The algorithm cancels flow-generating cycles by
an adaptation of the Goldberg-Tarjan algorithm. Using the dynamic tree data
structure, this phase can be implemented to run in 0(n2mlognlogB) time. The
resulting excesses at vertices other than the source are moved to the source along
augmenting paths in the second phase of the algorithm.

Consider a generalized pseudoflow that has non-negative excesses and whose
residual graph has no flow-generating cycles. The key idea of the second phase is
to search for augmenting paths from vertices with excess to the source that result
in a significant increase in the excess of the source. The algorithm maintains
a scaling parameter A such that the maximum excess at the source is at most
2mA more than the current excess. It looks for an augmenting path that can
increase the excess of the source by at least A. If the residual graph of the
current generalized pseudoflow has no flow-generating cycles, then one can find
a sequence of such paths such that, after augmenting the generalized flow along
these paths, the maximum excess at the source is at most mA more than the
current excess. This phase can be implemented in O(m(m + nlogn)) time by a
sequence of 0(m) single-source shortest path computations on graphs with arcs of
non-negative cost. Now A is divided by two and a new iteration is started. After
O(mlogB) iterations, when the excess at the source is very close to the optimum
value, Truemper's algorithm can be applied to bring all of the remaining excesses
to the source.

Maggs (personal communication, 1989) has observed that this algorithm can
be improved through better balancing of the two phases. Dividing A by a factor
of 2° after each iteration decreases the number of iterations by a factor of a and
increases the time required for the second phase by a factor of 2". The parameter
a is chosen so that the time required for the two phases is balanced. The resulting

algorithm runs in O (n2m2log2 Blog((ni logn)/m)+loglogfl time.

Acknowledgements. We would like to thank Serge Plotkin for his helpful comments on
an earlier draft, and for pointing out an error.

The research of the first author was partially supported by NSF Presidential Young
Investigator Grant CCR-8858097, IBM Faculty Development Award, ONR Contract
N00014-88-K-0166, and AT&T Bell Laboratories.

The survey was written while the second author was visiting the Department of Math-
ematics at M.I.T. Her research was partially supported by Air Force contract AFOSR-89-
0271 and DARPA contract N00014-89-J-1988.

The research of the third author was partially supported by the National Science
Foundation, Grant No. DCR-8605961, and the Office of Naval Research, Contract No.
N00014-87-K-0467.

160 A. Goldberg, E. Tardos and R. Tarjan

References

[1] Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E. (1988): Finding minimum-cost
flows by double scaling. Technical Report CS-TR-164-88, Department of Computer
Science, Princeton University

[2] Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E. (1987): Faster algorithms
for the shortest path problem. Technical Report CS-TR-154-88, Department of
Computer Science, Princeton University

[3] Ahuja, R.K., Orlin, J.B. (1987): A fast and simple algorithm for the maximum flow
problem. Sloan Working Paper 1905-87, Sloan School of Management, M.I.T.

[4] Ahuja, R.K., Orlin, J.B., Tarjan, R.E. (1987): Improved time bounds for the
maximum flow problem. Technical Report CS-TR-118-87, Department of Computer
Science, Princeton University (SIAM J. Comput., to appear)

[5] Awerbuch, B. (1985). (Personal communication, Laboratory for Computer Science,
M.I.T.)

[6] Balinski, M.L. (1985): Signature methods for the assignment problem. Oper. Res.
33, 527-536

[7] Barahona, F., Tardos, E. (1989): Note on Weintraub's minimum-cost circulation
algorithm. SIAM J. Comput. 18, 579-583

[8] Berge, C. (1973): Graphs and hypergraphs. North-Holland, Amsterdam
[9] Bertsekas, D.P. (1979): A distributed algorithm for the assignment problem. Labo-

ratory for Decision Systems, M.I.T. (Unpublished)
[10] Bertsekas, D.P. (1985): A distributed asynchronous relaxation algorithm for the

assignment problem. Proc. 24th IEEE Conf. on Decision and Control, Ft.
Lauderdale, FL

[11] Bertsekas, D.P. (1986): Distributed asynchronous relaxation methods for linear
network flow problems. Technical Report LIDS-P-1986, Laboratory for Decision
Systems, M.I.T.

[12] Bertsekas, D.P., Eckstein, J. (1988): Dual coordinate step methods for linear network
flow problems. Math. Program. 42, 203-243

[13] Bland, R.G., Jensen, D.L. (1985): On the computational behavior of a polynomial-
time network flow algorithm. Technical Report 661, School of Operations Research
and Industrial Engineering, Cornell University

[14] Busacker, R.G., Gowen, P.J. (1961): A procedure for determinimg a family of
minimal-cost network flow patterns. Technical Report 15, O.R.O.

[15] Busacker, R.G., Saaty, T.L. (1965): Finite graphs and networks: an introduction
with applications. McGraw-Hill, New York, NY

[16] Cheriyan, J., Maheshwari, S.N. (1987): Analysis of a preflow push algorithm
for maximum network flow. Manuscript, Department of Computer Science and
Engineering, Indian Institute of Technology, New Dehli (Unpublished)

[17] Cherkasskij, B.V. (1977): Algorithm for construction of maximal flow in networks
with complexity of 0(V2\/E) operations. Math. Methods Sol. Econ. Probl. 7,
112-125 (In Russian)

[18] Cherkasskij, B.V. (1979): A fast algorithm for computing maximum flow in a
network. In: A.V. Karzanov (Ed.): Collected Papers, Issue 3: Combinatorial
methods for flow problems, pp. 90-96. The Institute for Systems Studies, Moscow,
(In Russian)

[19] Cunningham, W.H. (1976): A network simplex method. Math. Program. / / ,
105-116

Network Flow Algorithms 161

[20] Dantzig, G.B. (1962): Linear programming and extensions. University Press, Prince-
ton, NJ

[21] Dinic, E.A. (1970): Algorithm for solution of a problem of maximum flow in
networks with power estimation. Sov. Math. Dokl. 11, 1277-1280

[22] Edmonds, J., Karp, R.M. (1972): Theoretical improvements in algorithmic efficiency
for network flow problems. J. Assoc. Comput. Mach. 19, 248-264

[23] Engel, G.M., Schneider, H. (1975): Diagonal similarity and equivalence for matrices
over groups with 0. Czech. Math. J. 25, 389-403

[24] Even, S. (1979): Graph algorithms. Computer Science Press, Potomac, MD
[25] Even, S., Tarjan, R.E. (1975): Network flow and testing graph connectivity. SIAM

J. Comput. 4, 507-518
[26] Ford jr., L.R., Fulkerson, D.R. (1962): Flows in networks. Princeton University

Press, Princeton, NJ
[27] Ford jr., L.R., Fulkerson, D.R. (1956): Maximal flow through a network. Can. J. Math.

8, 399̂ 104
[28] Fortune, S., Wyllie, J. (1978): Parallelism in random access machines. Proc. 10th

ACM STOC, pp. 114-118
[29] Fredman, M.L., Tarjan, R.E. (1987): Fibonacci heaps and their uses in improved

network optimization algorithms. J. Assoc. Comput. Mach. 34, 596-615
[30] Fredrickson, G. (1987): Fast algorithms for shortest paths in planar graphs with

applications. SIAM J. Comput. 16, 1004-1022
[31] Fujishige, S. (1986): A capacity-rounding algorithm for the minimum-cost circula-

tion problem: A dual framework of the Tardos algorithm. Math. Program. 35,
298-308

[32] Fulkerson, D.R. (1961): An out-of-Kilter method for minimal cost flow problems.
SIAM J. Appl. Math. 9, 18-27

[33] Gabow, H.N. (1985): Scaling algorithms for network problems. J. Comput. Syst.
Sci. 31, 148-168

[34] Gabow, H.N., Tarjan, R.E. (1988): Almost-optimal speed-ups of algorithms for
matching and related problems. Proc. 20th ACM STOC, pp. 514-527

[35] Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM
J. Comput., to appear

[36] Galil, Z. (1980): An 0(K5/3£2/3) algorithm for the maximal flow problem. Acta Inf.
14, 221-242

[37] Galil, Z., Naamad, A. (1980): An 0(£Klog2 V) algorithm for the maximal flow
problem. J. Comput. Syst. Sci. 21, 203-217

[38] Galil, Z., Tardos, E. (1988): An 0(n2(m+n log n) log n) minimum cost flow algorithm.
J. Assoc. Comput. Mach. 35, 374-386

[39] Glover, F., Klingman, D. (1973): On the equivalence of some generalized network
problems to pure network problems. Math. Program. 4, 269-278

[40] Goldberg, A.V. (1985): A new max-flow algorithm. Technical Report MIT/LCS/
TM-291, Laboratory for Computer Science, M.I.T.

[41] Goldberg, A.V. (1987): Efficient graph algorithms for sequential and parallel com-
puters. Ph. D. Thesis, M.I.T. (Also available as Technical Report TR-374, Labora-
tory for Computer Science, M.I.T.)

[42] Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E. (1988): Efficiency of the network
simplex algorithm for the maximum flow problem. Technical Report LCSR-TR-
117, Laboratory for Computer Science Research, Department of Computer Science,
Rutgers University

162 A. Goldberg, E. Tardos and R. Tarjan

[43] Goldberg, A.V., Plotkin, S.A., Tardos, E. (1988): Combinatorial algorithms for
the generalized circulation problem Technical Report STAN-CS-88-1209, Stan-
ford University (Also available as Technical Memorandum MIT/LCS/TM-358,
Laboratory for Computer Science, M.I.T.)

[44] Goldberg, A.V., Plotkin, S.A., Vaidya, P.M. (1988): Sublinear-time parallel algo-
rithms for matching and related problems. Proc. 29th IEEE FOCS, pp. 174-185

[45] Goldberg, A.V., Tarjan, R.E. (1986): A new approach to the maximum flow problem.
Proc. 18th ACM STOC, pp. 136-146

[46] Goldberg, A.V., Tarjan, R.E. (1988): A new approach to the maximum flow problem.
J. Assoc. Comput. Mach. 35, 921-940

[47] Goldberg, A.V., Tarjan, R.E. (1988): A parallel algorithm for finding a blocking
flow in an acyclic network. Technical Report STAN-CS-88-1228, Department of
Computer Science, Stanford University

[48] Goldberg, A.V., Tarjan, R.E. (1987): Finding minimum-cost circulations by canceling
negative cycles. Technical Report M1T/LCS/TM-334, Laboratory for Computer
Science, M.I.T. (Also available as Technical Report CS-TR 107-87, Department of
Computer Science, Princeton University)

[49] Goldberg, A.V., Tarjan, R.E. (1987): Finding minimum-cost circulations by succes-
sive approximation. Technical Report MIT/LCS/TM-333, Laboratory for Com-
puter Science, M.I.T. (Math. Oper. Res., to appear)

[50] Goldberg, A.V., Tarjan, R.E. (1987): Solving minimum-cost flow problems by
successive approximation. Proc. 19th ACM STOC, pp. 7-18

[51] Goldfarb, D., Grigoriadis, M.D. (1988): A computational comparison of the Dinic
and network simplex methods for maximum flow. Ann. Oper. Res.1383-123

[52] Goldfarb, D., Hao, J. (1988): A primal simplex algorithm that solves the maximum
flow problem in at most nm pivots and 0(t?m) time. Technical Report, Department
of Industrial Engineering and Operations Research, Columbia University

[53] Gondran, M., Minoux, M. (1984): Graphs and algorithms. J. Wiley & Sons, New
York, NY

[54] Grigoriadis, M.D. (1986): An efficient implementation of the network simplex
method. Math. Program. Study 26, 83-111

[55] Grotschel, M., Lovasz, L., Schrijver, A. (1988): Geometric algorithms and combi-
natorial optimization. Springer Verlag, Berlin, Heidelberg (Algorithms and Combi-
natorics, Vol. 2)

[56] Hassin, R. (1981): Maximum flows in (s, t) planar networks. Inf. Process. Lett. 13,
107-108

[57] Hassin, R., Johnson, D.B. (1985): An 0(nlog2n) algorithm for maximum flow in
undirected planar network. SIAM J. Comput. 14, 612-624

[58] Hopcroft, J.E., Karp, R.M. (1973): An ni/2 algorithm for maximum matching in
bipartite graphs. SIAM J. Comput. 2, 225-231

[59] In, M. (1960): A new method of solving transportation-network problems. J. Oper.
Res. Soc. Japan 3, 27-87

[60] Itai, A., Shiloach, Y. (1979): Maximum flow in planar network. SIAM J. Comput.
8, 135-150

[61] Jensen, P.A., Barnes, J.W. (1980): Network flow programming. J. Wiley & Sons,
New York, NY

[62] Jewell, W.S. (1958): Optimal flow through networks. Technical Report 8, M.I.T.
[63] Jewell, W.S. (1962): Optimal flow through networks with gains. Oper. Res. 70,

476-499
[64] Johnson, D.B., Venkatesan, S. (1982): Using divide and conquer to find flows in

directed planar networks in O(n'5 logn) time. Proc. 20th Annual Allerton Conf. on
Communication, Control and Computing, pp. 898-905

Network Flow Algorithms 163

[65] Kapoor, S., Vaidya, P.M. (1986): Fast algorithms for convex quadratic programming
and multicommodity flows. Proc. 18th ACM STOC, pp. 147-159

[66] Karmarkar, N. (1984): A new polynomial-time algorithm for linear programming.
Combinatorica 4, 373-395

[67] Karp, R.M. (1978): A characterization of the minimum cycle mean in a digraph.
Discrete Math. 23, 309-311

[68] Karp, R.M., Upfal, E., Wigderson, A. (1986): Constructing a maximum matching
is in random NC. Combinatorica 6, 35-48

[69] Karzanov, A.V. (1974): Determining the maximal flow in a network by the method
of preflows. Sov. Math. Dokl. 15, 434-437

[70] Khachiyan, L.G. (1980): Polynomial algorithms in linear programming. Zh. Vychisl:
Mat. Mat. Fiz. 20, 53-72

[71] Klein, M. (1967): A primal method for minimal cost flows with applications to the
assignment and transportation problems. Manage. Sci. 14, 205-220

[72] Konig, D. (1950): Theorie der endlichen und unendlichen Graphen. Chelsea
Publishing Co., New York, NY

[73] Kuhn, H.W. (1955): The Hungarian method for the assignment problem. Nav. Res.
Logist. 2, 83-97

[74] Lawler, E.L. (1976): Combinatorial optimization: Networks and matroids. Holt,
Rinehart and Winston, New York, NY

[75] Malhotra, V.M., Kumar, M.P., Maheshwari, S.N. (1978): An 0(3K33) algorithm for
finding maximum flows in networks. Inf. Process. Lett. 7, 277-278

[76] Miller, G.L., Naor, J. (1989): Flow in planar graphs with multiple sources and
sinks. To appear in Proc. 21th IEEE FOCS

[77] Minty, G.J. (1960): Monotone networks. Proc. R. Soc. Lend., Ser. A 257, 194-212
[78] Mulmuley, K., Vazirani, U.V., Vazirani, V.V. (1987): Matching is as easy as matrix

inversion. Combinatorica 7, 105-131
[79] Onaga, K. (1966): Dynamic programming of optimum flows in lossy communication

nets. IEEE Trans. Circuit Theory 13, 308-327
[80] Onaga, K. (1967): Optimal flows in general communication networks. J. Franklin

Inst. 283, 308-327
[81] Orlin, J.B. (1988): A faster strongly polynomial minimum cost flow algorithm. Proc.

20th ACM STOC, pp. 377-387
[82] Orlin, J.B. (1984): Genuinely polynomial simplex and non-simplex algorithms for

the minimum cost flow problem. Technical Report No. 1615-84, Sloan School of
Management, M.I.T.

[83] Orlin, J.B. (1985): On the simplex algorithm for networks and generalized networks.
Math. Program. Study 24, 166-178

[84] Orlin, J.B., Ahuja, R.K. (1987): New distance-directed algorithms for maximum-
flow and parametric maximum-flow problems. Sloan Working Paper 1908-87, Sloan
School of Management, M.I.T.

[85] Orlin, J.B., Ahuja, R.K. (1988): New scaling algorithms for assignment and mini-
mum cycle mean problems. Sloan Working Paper 2019-88, Sloan School of Man-
agement, M.I.T.

[86] Van Emde Boas, P., Kaas, R., Zijlstra, E. (1977): Design and implementation of an
efficient priority queue. Math. Syst. Theory 10, 99-127

[87] Papadimitriou, C.H., Steiglitz, K. (1982): Combinatorial optimization: Algorithms
and complexity. Prentice-Hall, Englewood Cliffs, NJ

[88] Reif, J.H. (1983): Minimum s — t cut of a planar undirected network in 0(nlog2n)
time. SIAM J. Comput. 12, 71-81

164 A. Goldberg, E. Tardos and R. Tarjan

[89] Renegar, J. (1988): A polynomial time algorithm, based on Newton's method, for
linear programming. Math. Program. 40, 59-94

[90] Rock, H. (1980): Scaling techniques for minimal cost network flows. In: Pape, U.
(ed.): Discrete structures and algorithms. Carl Hansen, Munich, pp. 181-191

[91] Ruhe, G. (1988): Parametric maximal flows in generalized networks - complexity
and algorithms. Optimization 19, ,235-251

[92] Shiloach, Y. (1978): An 0(nl log2 /) maximum-flow algorithm. Technical Re-
port STAN-CS-78-802, Department of Computer Science, Stanford University

[93] Shiloach, Y., Vishkin, U. (1982): An O(n2 logn) parallel max-flow algorithm. J. Al-
gorithms 3, 128-146

[94] Sleator, D.D. (1980): An O(nmlogn) algorithm for maximum network flow. Techni-
cal Report STAN-CS-80-831, Department of Computer Science, Stanford University

[95] Sleator, D.D., Tarjan, R.E. (1983): A data structure for dynamic trees. J. Comput.
Syst. Sci. 26, 362-391

[96] Tardos, E. (1985): A strongly polynomial minimum cost circulation algorithm.
Combinatorica 5, 247-255

[97] Tarjan, R.E. (1984): A simple version of Karzanov's blocking flow algorithm. Oper.
Res. Lett. 2, 265-268

[98] Tarjan, R.E. (1985): Amortized computational complexity. SIAM J. Algebraic
Discrete Methods 6, 306-318

[99] Tarjan, R.E. (1983): Data structures and network algorithms. SIAM, Philadelphia,
PA

[100] Tarjan, R.E. (1988): Efficiency of the primal network simplex algorihm for the
minimum-cost circulation problem. Technical Report CS-TR-187-88, Department
of Computer Science, Princeton University

[101] Tomizawa, N. (1972): On some techniques useful for solution of transportation
networks problems. Networks 1, 173-194

[102] Truemper, K. (1977): On max flows with gains and pure min-cost flows. SIAM
J. Appl. Math. 32, 450-456

[103] Vaidya, P.M. (1989): Speeding up linear programming using fast matrix multiplica-
tion. Technical Memorandum, AT&T Bell Laboratories, Murray Hill, NJ

[104] Weintraub, A. (1974): A primal algorithm to solve network flow problems with
convex costs. Manage. Sci. 21, 87-97

[105] Yakovleva, M.A. (1959): A problem on minimum transportation cost. In: Nemchi-
nov, V.S. (ed.): Applications of mathematics in economic research. Izdat. Social'no-
Ekon. Lit., Moscow, pp. 390-399

[106] Zadeh, N. (1973): A bad network problem for the simplex method and other
minimum cost flow problems. Math. Program. 5, 255-266

