
Mathematical Programming 36 (1986) 183-209
North-Hol land

O N P R O J E C T E D N E W T O N BARRIER M E T H O D S FOR
LINEAR P R O G R A M M I N G AND AN EQUIVALENCE TO
KARMARKAR'S PROJECTIVE M E T H O D

Philip E. GILL, Walter MURRAY, Michael A. SAUNDERS
Department of Operations Research, Star!ford University, Stanford, (,4 94305, USA

J.A. TOMLIN
Ketron Incorporated, Mountain View, CaliJbrnia 94040, USA

Margaret H. WRIGHT
Department of Operations Research, Stanford University, Stanford, CA 94305, USA

Received 12 October 1985
Revised manuscript received 20 June 1986

Interest in linear programming has been intensified recently by Karmarkar 's publication in 1984
of an algorithm that is claimed to be much faster than the simplex method for practical problems.
We review classical barrier-function methods for nonlinear programming based on applying a
logarithmic transformation to inequality constraints. For the special case of linear programming,
the t ransformed problem can be solved by a "projected Newton barrier" method. This method
is shown to be equivalent to Karmarkar 's projective method for a particular choice of the barrier
parameter. We then present details of a specific barrier algorithm and its practical implementation.
Numerical results are given for several non-trivial test problems, and the implications for future
developments in linear programming are discussed.

Key words: Linear programming, Karmarkar 's method, barrier methods.

I. Introduction

Interest in linear programming methods arises in at least two different contexts:
theoretical and practical. The long-established simplex method, developed by G.B.
Dantzig in the late 1940's, has been known from the beginning to be of combinatorial
complexity in the worst case. However, in practice it tends to require a number of
iterations that is approximately linear in the problem dimension. The linear algebraic
work associated with the simplex method typically involves an LU factorization
of a square matrix (the basis). Each iteration involves the solution of two linear
systems, followed by an update of the basis factors (to reflect replacement of one
column). The factorization is periodically recomputed rather than updated, to
preserve accuracy and to condense the factors. Although linear programs are often
very large, the constraint matrix is normally very sparse. Sparse-matrix techniques

The research of the Stanford authors was supported by the U.S. Department of Energy Contract
DE-AA03-76SF00326, PA No. DE-AS03-76ER72018; National Science Foundation Grants DCR-8413211
and ECS-8312142; the Office of Naval Research Contract N00014-85-K-0343; and the U.S. Army Research
Office Contract DAAG29-84-K-0156.

The research of J.A. Tomlin was supported by Ketron, Inc. and the Office of Naval Research Contract
N00014-85-C-0338.

183

184 P.E. Gill et al. / Barrier methods for linear programming

have developed to the point where the factorization and updates required in the
simplex method can be performed not only rapidly, but also with assured numerical
stability (see the survey by Gill et al., 1984). From a practical viewpoint, these two
features--a typically linear number of iterations, and fast methods for performing
each iteration--imply that the simplex method is an effective and reliable algorithm
for linear programming, despite its seemingly unfavorable complexity.

Many researchers, beginning with Dantzig himself, have observed the apparently
unsatisfactory feature that the simplex method traverses the boundary of the feasible
region. From the outset, attempts have been made to develop practical linear
programming methods that cross the interior of the feasible region--for example,
yon Neumann (1947), Hoitman et al. (1953), Tompkins (1955, 1957) and Frisch
(1957). Such methods have sometimes involved the application of nonlinear tech-
niques to linear programs. However, none of these methods has previously been
claimed, even by its developers, to be competitive in speed with the simplex method
for general linear programs.

On the theoretical side, researchers attempted for many years to develop a linear
programming algorithm with only polynomial complexity. In 1979, to the accompani-
ment of wide publicity, this issue was resolved when Khachiyan (1979) presented
a worst-case polynomial-time method based on a nonlinear geometry of shrinking
ellipsoids. Although initially it was thought that the ellipsoid methods might be as
fast in practice as the simplex method, these hopes have not been realized. Broadly
speaking, there are two major difficulties: first, the number of iterations tends to be
very large; second, the computation associated with each iteration is much more
costly than a simplex iteration because sparse-matrix techniques are not applicable.

Within the past two years, interest in linear programming has been intensified by
the publication (Karmarkar, 1984a, b) and discussion of a linear programming
algorithm that is not only polynomial in complexity, but also is claimed to be much
.faster than the simplex method for practical problems.

In Section 2, we first examine the well known barrier-function approach to solving
optimization problems with inequality constraints, and derive a representation for
the Newton search direction associated with the subproblem. In Section 3, we show
a formal equivalence between the Newton search direction and the direction associ-
ated with Karmarkar's (1984a, b) algorithm. Section 4 describes a complete interior-
point method for linear programming based on the barrier transformation, and
Section 5 gives some numerical results obtained with a preliminary implementation
of that method. The implications of these results and directions for future research
are discussed in Section 6.

1.2. Notation

The term projective method will denote the algorithm given by Karmarkar
(1984a, b) for the special linear program (3.1); see below. The term barrier method
will often be used as an abbreviation for projected Newton barrier method. The vector
norm I1" II will always denote the Euclidean norm IIv[[2= (vrv) 1/2.

P.E. Gill et al. / Barrier methods for linear programming

2. A barrier-function approach

185

2.1. Applying a barrier transformation to a linear program

Barrier-function methods treat inequality constraints by creating a barrier function,
which is a combination of the original objective function and a weighted sum of
functions with a positive singularity at the constraint boundary. (Many barrier
functions have been proposed; we consider only the logarithmic barrier function,
first suggested by Frisch, 1955.) As the weight assigned to the singularities approaches
zero, the minimum of the barrier function approaches the minimum of the original
constrained problem. Barrier-function methods require a strictly feasible starting
point for each minimization, and generate a sequence of strictly feasible iterates.
(For a complete discussion of barrier methods, see Fiacco, 1979; both barrier and
penalty function methods are described in Fiacco and McCormick, 1968. Brief
overviews are given in Fletcher, 1981; and Gill, Murray and Wright, 1981.)

We consider linear programs in the following standard form:

minimize cVx xG~q~ n

(2.1)
subject to Ax = b, x>10,

where A is an m x n matrix with m ~ n. Let x* denote the solution of (2.1), and
note that

C --~ A T T r * + r / * , (2.2a)

r/* I> 0, (2.2b)

r /~x*=0, j = l , . . . , n , (2.2c)

where rr* and r/* are Lagrange multipliers associated with the constraints Ax = b
and x/> 0 respectively. The problem is said to be primal nondegenerate if exactly m
components of x* are strictly positive, and dual nondegenerate if exactly n - m
components of r/* are strictly positive.

When applying a barrier-function method to (2.1), the subproblem to be solved is:

minimize F(x) =- cVx- / x i In xj
x ~ R " j = 1

(2.3)
subject to Ax = b,

where the scalar/~ (IX > 0) is known as the barrier parameter and is specified for
each subproblem. The equality constraints cannot be treated by a barrier transforma-
tion, and thus are handled directly.

If x*(/x) is the solution of (2.3), then x*(/x)~ x* as ix ~ 0 (see, e.g., Fiacco and
McCormick, 1968). Very strong order relations can be derived concerning x*(p~)
and cXx*(ix) (see, e.g., Mifflin, 1972, 1975; Jittorntrum, 1978; Jittorntrum and
Osborne, 1978). In particular, when (2.1) is primal nondegenerate,

]]x*(Iz) - x*]] = O(tz) (2.4a)

186 P.E. Gill et al. / Barrier methods [br linear programming

for sufficiently small p, When (2.1) is primal degenerate, the corresponding relation

is

[I x * (~) - x* l l - - o (, / - f f) . (2.4b)

The optimality conditions for (2.3) imply that at x = x*(/x), there exists a vector
7r(#) such that

c = AVTr(tx) + i~D-'e, (2.5)

where

D =diag(xi) , j = 1 , . . . , n, (2.6)

and e = (1, 1 , . . . , 1) w. Comparing (2.5) and (2.2), we see that if (2.1) is primal

nondegenerate, 7r(/x)~ 7r* as /x ~0 , and

lira ~z _ r/j*. (2 . 7)
. -o x*(o)

2.2. Solution of the subproblem

Given a linearly constrained problem of the form

minimize F(x) subject to Ax= b, (2.8)

a standard approach is to use a feasible-point descent method (see, e.g., Gill, Murray
and Wright, 1981). The current iterate x always satisfies Ax = b, and the next iterate

.{ is defined as

.g = x + c~p, (2.9)

where p is an n-vector (the search direction), and ~ is a positive scalar (the steplength).
The computat ion of p and a must ensure that A.~ = b and F(.~) < F(x).

The Newton search direction associated with (2.8) is defined as the step to the
minimum of the quadratic approximation to F(x) derived from the local Taylor
series, subject to retaining feasibility. Thus, the Newton search direction PN is the
solution of the following quadratic program:

minimize grp + ~ pr Hp

(2.1o)
subject to Ap=O,

where g - - -VF(x) and H---V2F(x). If 7rN is the vector of Lagrange multipliers for
the constraints in (2.10), then the required solution satisfies the linear system

(H Ar~(--PN~o]\~rN] =(0g)" (2.11,

Note that rrN .converges to the Lagrange multipliers for the constraints Ax = b in
the original problem (2.8).

P.E. Gill et al. / Barrier methods for linear programming 187

2.3. The projected Newton search direction

When F(x) is the barrier function in (2.3), its derivatives are

g (x) = c - l ~ D ~e and H(x)=-I~D -2,

where D is defined by (2.6). Note that g and H are well defined only if xj ~ 0 for
all jo

Let p~ (the projected Newton barrier direction) denote the Newton search direction
defined by (2.11) when F is the barrier function of (2.3). The associated Lagrange
multipliers will be denoted by 7rB. Since H(x) is positive definite when x > 0, PB is
finite and unique, and is a descent direction for F(x) , i.e., (c--tzD-~e)Tpn <0.

It follows from (2.11) that PB and r satisfy the equation

Rewriting (2.12) in terms of a vector rR defined by Dr~ = - ~ p ~ , we see that rE and
~rB satisfy

It follows that 7rs is the solution and rs the optimal residual of the following linear
least-squares problem:

minimize I[O c - ~ e - DAT~'[I. (2.14)

The projected Newton barrier direction is then

PB = - (1 / tx) DrB. (2.15)

For a given positive/x, Newton's method will eventually reach a domain in which

the " ideal" unit step along the direction P8 will be feasible and reduce the barrier
function. The iterates can thereafter be expected to converge quadratically to x*(~) .
In general, the smaller ix, the smaller the attractive domain. The algorithm remains
well defined as p. tends to zero. (The limiting case can be safely simulated in practice
by using a very small value of/z.)

Note that feasible-direction methods can be made independent of the scaling of

the search direction by appropriate re-scaling of the steplength c~. We could therefore
define the barrier search direction as

Pn = -DrB (2.16)

for any p, => 0. The " ideal" step would then be ce = 1//x.
The barrier search direction (2.16) with /x = 0 in (2.14) is used in an algorithm

proposed by Vanderbei, Meketon and Freedman (1985). From the above comments,
we see that such an algorithm has no domain of quadratic convergence.

188 P.E. Gill et al./ Barrier methods for linear programming

2.4. Upper bounds

The barrier transformation and the associated Newton search direction can also
be defined for linear programs with upper and lower bounds on the variables, of
the form:

minimize cVx
X ~ R n

subject to A x = b, l <~ x <~ u.

The subproblem analogous to (2.3) is

tl

minimize c X x - t , Y~ l n (x j - / j) - / z ~ ln (u j -x j)
X E R " j = l j - - I

subject to A x = b.

The Hessian of the associated barrier function will be positive definite only if at
least one of lj or u~ is finite for every j. In this case, the least-squares problem
analogous to (2.14) is

minimize II D c - > / 3 e - D A r rrll.
rr

Here, the matrices D and /3 are defined by D = diag(aj) and 13= diag(4) , where

a j = l / (1 / s 2 + l / t ~) ~/2 and 4 = S i (1 / s j - 1 / t j) ,

with s) = xi - lj and ti = uj - xj. For simplicity, the remainder of the discussion will
assume that the bounds are of the form in (2.1), i.e., 0~<xj<~oo, except for the
artificial variable discussed in Section 4.2.

3. Relationship with Karmarkar's projective method

In this section, we show the connection between the barrier and projective methods
when both are applied to a specialized linear program. We assume that the reader
is familiar with the projective method; a good description is given in Todd and
Burrell (1985).

3.1. S u m m a r y o f the projective me thod

In the projective method, the linear program is assumed to be of the special form

minimize eVx
_leER n

(3.1)
subject to C x = O, e T X = 1, X >- O.

Let x* denote a solution of (3.1). It is also assumed that

cVx * = 0, (3.2)

P.E. Gill et al. / Barrier methods Jot linear programming 189

and that Ce = 0. (These assumptions can always be assured by transforming the
problem.)

The optimality conditions for (3.1) imply that

c = CXAc + eAe + r/, (3.3)

where rt is the Lagrange multiplier vector for the bound constraints of (3.1). The
complementarity conditions at x* imply that

x~'q. i =0, j = 1 , . . . , n, (3.4)

where x* denotes the j th component of x* . Taking the inner product of c and x*
and using (3.2)-(3.4), we obtain AeeVx * =0. Since eVx * = 1, it follows that Ae =0.

Any strictly positive diagonal matrix D defines the following projective trans-
formations, which relate any strictly feasible point x and the transformed point x':

1 1
x ' D-~x , x = - - Dx ' . (3.5)

e T D - I x eTDx '

In the projective method, given an iterate x, D is defined as d iag(x~ , . . . , xn). (Note
that D is the same as the diagonal matrix (2.6) associated with the barrier method,
and that D e = x.) The next iterate in the transformed space is given by

~' = x ' - a 'rK, (3.6)

where rK = D C - D C T T r ~ : - Oe is the optimal residual of the linear least-squares
problem

minimize D c - (D C T e , (~) l . (3.7)
rr , ,,b \O11

We assume henceforth that (D C v e) has full rank, so that the solution of (3.7) is
unique. (Note that (D C T e) and (C r e) have full rank if and only if C has full
rank; the last column is orthogona] to the others in both cases.) The steplengtb a '
in (3.6) is chosen to ensure strict feasibility of ~' as well as descent in the transformed
"potential function" (see Karmarkar, 1984a, b, for details).

The new iterate gK in the original parameter space is obtained by applying the
transformation (3.5) to ~', so that

l
xK - e X D (x , - ee'rK) D (x ' - ce'rK) = y (x -- ~DrK),

where y is chosen to make eT.~K -- 1.

3.2. Properties o f the projective method

Let 7re denote the solution of the least-squares problem

minimize IIDc- DCW~rH.
Tr

(3.8)

190 P.E. Gill et al. / Barrier methods for linear programming

Using the normal equations associated with (3.8), observe that 7rc satisfies

C D 2 C T w c = C D 2 c. (3.9)

We also define

rc = D e - D c T T r c , (3.10a)

P,c = x T r c . (3.10b)

We now state some properties of various quantities appearing in the projective
method.

Lemma 3,1. The so lu t ion o f (3.7) is r = 7re a n d 4~ = c T x / n .

Proof. From the normal equations associated with (3.7) and the relation Cx = 0,
we see that ~'K and ~b satisfy

CD2CTT"rK = CD2r eTec~ = cTx. (3.1 1)

Since the solution of (3.7) is unique, comparison of (3.9) and (3.11) gives the result
directly. []

Lemma 3,2. In the p ro j ec t i v e m e t h o d ,

1
r K = r C - d p e , ~ = n a ' , Y - 1 + o ~ (& - # c) '

a n d the n e w i terate m a y be wr i t t en as

PK = I~c,X - D r c , ~K = x + J T P K .

Proof. The result follows from algebraic manipulation of the relevant formulae. []

3,3. R e l a t i o n s h i p wi th the barr ier search d i rec t ion

When the barrier method is applied to problem (3.1), it follows from (2.14) and
(2.15) that the search direction is given by

1
PB = - - - D r y ,

where

rB = D c - i.te - D c T ~ B -- OBDe,

with 7ru and 0B taken as the solution of

minimize D c - / ~ e - D (C w e) (~ I . (3.12)

h

qr, 0 \ o / I

The new iterate is then defined as

XB = X + apB ,

for some steplength a. We assume now that (C w e) has full rank, so that the solution
of (3.12) is unique.

P.E. Gill et al. / Barrier methods for linear programming 191

Lemma 3.3. I f the barrier parameter is chosen to be Ix = Ixc, then OB = 0 and 7rB = rrc.

Proof. The normal equations associated with (3.12) and the relation C x = 0 imply
that ~'H and 0B satisfy

CD2CrrrR + CD2eOB = CD2c, x T D c T ~ R + (xTx) OR = x T D c -- IX.

(3.13)

When IX = Ixc, direct substitution using (3.9) and (3.10) shows that (3.13) is satisfied
for 7rB=Trc and 0n=0 . Since the solution of (3.13) is unique, this proves the
lemma. 17

Lemma 3.4. I f IX = Ixc, then

rt~ = rc - Ixce, PR = 1_~ (ixcX - Dr c),
I xc

xu = x + apu.

Proof. As in Lemma 3.2, the result is obtained by algebraic manipulation. []

Compar ing Lemmas 3.2 and 3.4, the main result now follows.

Theorem 3.1. Suppose that the projective me thod and the barrier method are applied

to problem (3.1), using the same initial point. I f the barrier parameter is tx = Ixc, the

search directions Po and PK are parallel. Further, i f the steplengths satisfy a = ~Yixc ,

the iterates -fu and 2K are identical.

Theorem 3.1 is an existence result, showing that a special case of the barrier
method would follow the same path as the projective method. This does not mean

that the barrier method should be specialized. For example, the value Ixc is an
admissible barrier parameter only if it is positive. Note that /xc is positive initially,

if the starting point Xo is a multiple of e. Furthermore, Ixc tends to zero as the
iterates converge to x* , and could therefore be a satisfactory choice for the barrier
algorithm as the solution is approached.

Similarly, as the barrier method converges to a solution of the original problem
for any suitable sequence of barrier parameters, 0B will converge to Ae, which is
zero. This is consistent with the choice /x =/Zc, which gives 0B = 0 directly.

4. A projected Newton barrier algorithm

In this section, we give details of the barrier algorithm used to obtain the numerical
results of Section 5. The algorithm applies to problems of the standard form (2.1).
Each iteration is of the form Y~ = x + ap (2.9), where the search direction is PB defined
by (2.14)-(2.15), and the barrier parameter m a y be changed at ever 3, iteration. Any

192 P.E. Gill et al. / Barrier methods for linear programming

tolerances described are intended to be suitable for machines whose relative precision
is about 10 -15 .

Alternative approaches to certain parts of the algorithm are discussed in

Section 6.

4.1. The iteration

At the start o f each iteration, the quantities IX, x, 7r and r/ are known, where
IX > 0, x > 0, A x = b, and r / = c - A X ~ . For computa t ional reasons we compute a
correction to 7r at each stage, since a good estimate is available from the previous

iteration. The main steps o f the iteration then take the following form.
1. Define D = d i a g (x j) and compute r = Dr / - i xe . Note that r is a scaled version

of the residual from the optimality condit ion (2.5) for the barrier subproblem, and

hence that Ilrll =0 if x = x*(tz).
2. Terminate if IX and Ilrl[are sufficiently small.
3. I f appropriate , reduce IX and reset r.
4. Solve the least-squares problem

minimize II r - DAVc37r I[" (4.1)
8~r

5. Compute the updated vectors 7r ~- 7r + ,5~r and r/~- r / - AT3~ -. Set r = D r / - Ixe

(the updated scaled residual) and p = - (1 ~ I x) D r (cf. (2.14) and (2.15)).

6. Find aM, the max imum value of a such that x+o~p>~O.

7. Determine a steplength a c (0, aM) at which the barrier function F (x + ap) is

suitably less than F (x) .

8. Update x ,- x + ap.

All iterates satisfy A x = b and x > 0. The vectors 7r and r/ approximate the dual

variables ~-* and reduced costs r/* o f the original linear program (cL (2.2) and (2.5)).

4.2. The feasibility phase

In order to apply the barrier algorithm to (2.1), a strictly feasible starting point

is necessary. Such a point may be found by the following " t ex tbook" phase 1

procedure in which a barrier method is applied to a modified linear program. For

any given initial point x0>O, we define r b - A x o with [[s[] = 1, and solve the
modified linear program

minimize
x,r

subjec t to (A s) (~) = b , x~>O, r (4.2)

using the feasible starting point xo > 0, r = [I b -Axo]l . (Note that, even if A is sparse,
the addit ional co lumn s in (4.2) will in general be dense.) In our experiments we

have used Xo = [] b]1 e.

When r = 0, a suitable point has been found. Since the barrier t ransformat ion

will not allow r to reach the desired value of zero, ~: must be treated differently

P.E. Gill et al. / Barrier methods for linear programming 193

from the other variables in solving (4.2) with a barrier algorithm. In our implementa-

tion, the search direction p and the maximum step aM are computed as if the
variable ~ were subject to the bound ~:~>-1. I f the step a causes ~: to become
negative, an appropriate shorter step is taken and phase 1 is terminated. The original
linear program is presumed to be infeasible if the final ~: is positive for a sufficiently
small value of p~.

As an alternative, we note that the convergence of the barrier method appears to
be moderately insensitive to the choice of linear objective function. This suggests
a single-phase algorithm in which an objective function of the form wcVx + ~ is used
in (4.2), for some positive value of the scalar w. When ~: reaches zero, it is thereafter
excluded from the problem. If a single value of o) can be retained at every iteration,
only a slight change in the definition of the linear program is required after a feasible
point is found. Some preliminary results with w fixed at 0.1/lie H seem promising;
see Section 5. In general, a sequence of decreasing values of co may be needed to
ensure that a feasible point is always obtained if one exists.

4.3. Solution o f the least-squares subproblems

For problems of even moderate size, the time required to perform an iteration
will be dominated by solution of the least-squares problem (4.1). The widespread
interest in interior-point methods has arisen because of their reported speed on
large-scale linear programs. Consequently, problem (4.1) must be solved when A
is large and sparse. Fortunately, methods for sparse least-squares problems have
improved dramatically in the past decade. (For a recent survey, see Heath, 1984.)

An obvious approach to minimizing II r - DAr6rrll is to solve the associated normal
equations

AD2A'r ~ r = A D r (4.3)

using the Cholesky factorization A D 2 A v= RVR with R upper triangular. Reliable
software exists for factorizing symmetric definite systems, notably SPARSPAK-A
(George and Liu, 1981), MA27 (Duff and Reid, 1982, 1983), and YSMP (Eisenstat
et al., 1982). If the original linear program (2.1) is primal nondegenerate, the matrix
A D 2 A T will be non-singular even at the solution. However, for a degenerate problem,
A D 2 A v becomes increasingly ill-conditioned as the solution is approached, and the
accuracy of the computed version of A D 2 A r correspondingly deteriorates. Further-

more, any dense columns in A (such as s in phase 1) degrade the sparsity of R.
To alleviate these difficulties, we have used a "hybrid" method in which the

least-squares problems are solved by a conjugate-gradient method (LSQR; Paige
and Saunders, 1982a, b) with a triangular preconditioner R. Thus, an iterative
method is applied to solve

minimize I] r - (D a V R - ') z l [, (4.4)

and the correction 6~- is recovered by solving RS~r = z.

194 P.E. Gill et aL / Barrier methods for linear programming

The preconditioner R comes from the Cholesky factorization of a sparse matrix
that approximates AD2A v. Thus,

AD2 A "r~- ,ZiD2 ft a = R T R, (4.5)

where A and R are obtained as follows.
1. Before beginning the barrier algorithm, a preliminary row permutation is

obtained from the symbolic factorization of a matrix ,z~,4 r, where ,4 is A with certain
columns replaced by zero. For the results of Section 5, we excluded the artificial
vector s in (4.2) and any columns of A containing 50 or more nonzeros. Subroutines
G E N Q M D and SMBFCT of George and Liu (1981) were used to obtain a minimum-
degree ordering P and to set up appropriate data structures for the subsequent
numerical factorizations.

2. At each iteration of the barrier algorithm, further columns and /or rows of
may be replaced by zero: columns for which xj ~< 10 6, and rows that have been
marked for exclusion during earlier iterations. Subroutine GSFCT of George and
Liu (1981) is used to obtain the Cholesky factorization

PAD2ATP v= u r u , U upper triangular,

2<z with the proviso that if a diagonal element of U satisfies uii ~ 10 -'2, the ith row of
U is replaced by e~, and the ith row of PA is marked for exclusion in later iterations.
The preconditioner for (4.4) is defined as R = UP.

3. After each iteration, any variables satisfying xj ~< 10 -8 are changed to zero for
the remaining iterations. This (conservative) test is unlikely to remove the "wrong"
variables from the problem, but it allows some economy in computing R and solving
the least-squares problems.

The performance of LSQR is strongly affected by the quality of the preconditioner,
and by the specified convergence tolerance ATOL (see Paige and Saunders, 1982a).
With the present implementation, we have AD2A v = RTR + E~ + E2, where E~ has

low rank and ITE_,[] is small; the value of ATOL is taken as 10 -~~ In this situation,
LSQR typically requires only one or two iterations to achieve acceptable accuracy
in phase 2, and only two or three iterations in phase 1.

There is scope in future work for degrading the approximation (4.5) to obtain a
sparser R more quickly, at the expense of further iterations in LSQR. In fact, Gay
(1985) has reported considerable success in the analogous task of preconditioning
the symmetric conjugate-gradient method in order to solve the normal equations
(4.3). We discuss this further in Section 6.1.

4.4. Determination of the steplength

The steplength a in (2.9) is intended to ensure a reduction in the barrier function
F(x) in (2.3) at every iteration. Let f (~) denote F (x + c~p), treated as a function of
a, and let aM be the largest positive feasible step along p. When p = PB, f ' (0) < 0;
by construction of a positive singularity at the boundary of the feasible region,
. / '(aM) = + ~ . Thus, there must exist a point a* in the interval (0, c~M) such that

P.E. Gill et al. / Barrier methods Jot linear programming 195

f (a *) = O. Because of the special form of f, a* is unique and is the univariate

minimizer o f f (a) for a ~ [0, aM].

In our algorithm, a is an approximation to a zero of the function f ' (a) . In order
to obtain a "sufficient decrease" in F (in the sense of Ortega and Rheinboldt, 1970),

an acceptable a is any member of the set

r = (a - I s < - -/3f'(0)},

where /3 is a number satisfying 0 ~</3 < 1. (The smaller the value of/3, the closer

the approximation of a to a zero o f f ' .)

The computation of an acceptable steplength involves an iterative procedure for

finding a zero o f f ' . Many efficient algorithms have been developed for finding the

zero of a general univariate function (see, e.g., Brent, 1973), based on iterative

approximation by a low-order polynomial. However, such methods tend to perform
poorly in the presence of singularities. In order to overcome this difficulty, special

steplength algorithms have been devised for the logarithmic barrier function (e.g.,

Fletcher and McCann, 1969; Murray and Wright, 1976). These special procedures

are based on approximating f (a) by a function with a similar singularity.
Given an interval I such that a* r I and I" c I, a new interval [(i t I) is generated

using as , the zero of a simple monotonic function 6 (a) that approximates f ' (a) .

Let as z I be the current best estimate of a*. Define the function 6 (a) to be

6(~)= ~ , + - -
a M - - a ~

where the coefficients V~ and 72 are chosen such that ~ (a s) = . F (a s) and ~b'(as)=

f"(a•). The new estimate of the zero of i f (a) is then given by

a~ = aM + Y2/ Y~.

Using this prescription, a sequence of intervals {6} is generated such that I0 =

[0, aM], 6 c lj ~ and F c I i. (For additional details, see Murray and Wright, 1976.)

The first point a m that lies in F is taken as a.

In practice, a close approximation to the minimum of F (x + ap) can be obtained
after a small number (typically 1-3) of estimates a,~. Since the minimum is usually

very close to a^4, at least one variable will become very near to its bound if an

accurate search is performed. Although this may sometimes be beneficial, the danger

exists--particularly in phase 1--that the optimal value of that variable could be far
from its bound. Thus, performing an accurate linesearch may temporarily degrade

the speed of convergence. To guard against this, we use a = 0.9aM in phase 1 (if

to = 0 in the objective function). Otherwise, we set/3 = 0.999 in the linesearch and
use 0.9aM as an initial step, which is normally accepted. If necessary, we compute

the sequence of estimates a m as described.

4.5. Choice o f the barrier parameter

In a "classical" barrier-function method (e.g., as described in Fiacco and McCor-

mick, t968), the usual procedure is to choose an initial value of p~, solve the

196 P.E. Gill et al. / Barrier methods.[or linear programming

subproblem (2.3), and then decrease/x (say, by multiplying by a constant). In order
for x*(/x) to converge to x*, it is essential that/~ ~ 0. If the barrier search direction
and a steplength as defined in Section 4.4 are used to solve (2.3) with a fixed /x,
standard proofs for descent methods (see, e.g., Ortega and Rheinboldt, 1970) can
be applied to guarantee convergence to x*(/x). When (2.1) is primal nondegenerate
and ~ is "sufficiently small" (say, ~ =/~mm) it follows from (2.4a) that the final
iterate of the barrier method will approximate the solution of the linear program
(2.1) to within the accuracy specified by /Xmin. If the problem is degenerate, (2.4b)
implies that the solution will be less accurate.

Various strategies for changing # can be devised. The main aim is to reduce p,
as quickly as possible, subject to ensuring steady progress toward the solution. For
example, only a single step of Newton's method could be performed for each of a
decreasing sequence of/x-values. Alternatively, each value of /x could be retained
until the new iterate satisfies some convergence criterion for the subproblem. We
have not experimented with the values /x =/xc of Theorem 3.1 because of the
difficulty (and artificiality) of converting general problems to the special form (3.1).

As indicated in the description of the algorithm, the vector r = DT/- /xe is used
to measure convergence for the current subproblem. The size of II r[I is monitored
in our implementation, and the reduction of p. is controlled by two parameters as
follows.

1. An initial "target level" for Ilrl[is defined to be ~-= I[r0]l * RGFAC.
2. Whenever Nr[l<~7, the barrier parameter is reduced to /x * MUFAC, r is

recomputed, and a new target level is defined to be r = 11 rll * RGFAC.
The parameters RGFAC and MUFAC should lie in the range (0, 1) to be meaningful.
For example, the values RGFAC = 0.99, MUFAC = 0.25 allow a moderate reduction
in/x almost every iteration, while RGFAC = MUFAC = 0.001 requests more discern-
ible progress towards optimality for each subproblem, with a substantial reduction
in/x on rare occasions.

4.6. Convergence tests

Two other parameters,/xo and/xm~,, are used to define the initial and final values
of the barrier parameter, and the degree of optimality required for the final subprob-
lem. In the feasibility phase,/x is initialized to/Xo(1 + ~)/n and progressively reduced
as described above until E reaches zero. In the optimality phase, /X is reset to
/xo(1 + IcVxl)/n (except if o)> 0 in the objective function) and again progressively
reduced.

Whenever a reduction is about to take place (in Step 3 of the algorithm), a "final"
barrier parameter is defined by

/xF=/xmln(l+~) /n or UF=/Xmi,,(I+IcTx])/n,

depending on the phase. If the newly reduced/x is less than/XF, the barrier parameter
and the target level for [Irl] are fixed for the remaining iterations at /X =/x~ and

P.E. Gill et al. / Barrier methods for linear programming 197

~-= x / ~ tZF r e spec t i ve ly . T e r m i n a t i o n then o c c u r s in S tep 2 o f the a l g o r i t h m w h e n

Ilrll<~,.
In o u r e x p e r i m e n t s we h a v e used p ,0=0.1 and /~min = 10 -6. I f /X0 is tOO large, a

d a n g e r exis ts on p r o b l e m s fo r w h i c h the f eas ib le r e g i o n A x = b, x > 0 is u n b o u n d e d ;

s ince the b a r r i e r f u n c t i o n is t h e n u n b o u n d e d b e l o w , the i tera tes can d ive rge in p h a s e

1 b e f o r e the ar t i f ic ia l va r i ab l e ~ r eaches zero .

5. Numerical results

5. I. P e r f o r m a n c e o f the barr ier m e t h o d on a s t a n d a r d test se t

In this s e c t i o n we s u m m a r i z e the p e r f o r m a n c e o f the ba r r i e r a l g o r i t h m d e s c r i b e d

in S e c t i o n 4 on p r o b l e m s f r o m an LP test set in use at the Sys tems O p t i m i z a t i o n

L a b o r a t o r y . T h e first n ine p r o b l e m s , w h i c h are ava i l ab l e t h r o u g h N e t l i b (D o n g a r r a

a n d G r o s s e , 1985), j a re l i s ted in o r d e r o f the n u m b e r o f rows. P r o b l e m S C S D 6 was

o b t a i n e d f r o m H o a n d L o u t e (1981), and N Z F R I is a m o d e l d e v e l o p e d by the N e w

Z e a l a n d F o r e s t r y R e s e a r c h Ins t i tu te (G a r c i a , 1984).

All p r o b l e m s are in the f o r m (2.1). To o b t a i n cons t r a in t s o f the f o r m A x = b, any

g e n e r a l i n e q u a l i t y cons t r a in t s a re c o n v e r t e d to equa l i t i e s us ing s lack var iab les .

De ta i l s o f the p r o b l e m s are g iven in T a b l e 1. T h e va lue o f " r o w s " refers to the

n u m b e r o f g e n e r a l cons t r a in t s , and " ' c o l u m n s " to the n u m b e r o f va r i ab les , e x c l u d i n g

slacks. T h e n u m b e r " s l a c k s " is de f ined above . T h e c o l u m n " A " gives the n u m b e r

o f n o n z e r o s in the p r o b l e m . This figure i n c l u d e s o n e for each s lack bu t e x c l u d e s

the n o n z e r o s in b and c.

T h e runs s u m m a r i z e d in Tab le s 2 -5 were m a d e in d o u b l e p rec i s ion on an I B M

3081K (r e l a t ive p r e c i s i o n 2 .2 • 10-16). T h e s o u r c e c o d e was c o m p i l e d wi th the I B M

Table 1

Problem statistics

Problem Rows Slacks Columns A Ilx*ll II~'*ll

Afiro 27 19 32 102 9.7 x 102 3.9 x 101
ADLittle 56 41 97 424 6.1 • 102 6.2 • 103
Share2b 96 83 79 777 1.8 x 10 -~ 3.8 x 102
Sharelb 117 28 225 1179 1.3 • 106 7.7 • 101
Beaconfd 173 33 262 3408 1.6 x 105 1.2 • 102
Israel 174 174 142 2443 9.1 • 105 5.6 • 102
BrandY 220 54 249 2202 6.5 x 104 8.7 • 10 l
E226 223 190 282 2768 9.6 x l0 z 4.1 • 10 l
BandM 305 0 472 2494 1.5 • 10 3 3.0 • 10 l
SCSD6 147 0 1350 4316 4.5 • 10 ~ 7.9 x 10 l
NZFRI 623 40 3521 12840 4.3 • 105 3.4• 105

For details, send electronic mail to netlib@anl-mcs or to research!netlib saying "'send index from
lp / data".

198 P.E. Gill et aL/ Barrier methods for linear programming"

Fortran 77 compiler VS Fortran, using NOSDUMP, NOSYM and OPT(3). All times
given are for a complete run, including model input and solution output.

Table 2 gives the number of iterations and CPU-seconds required by the primal
simplex method, as implemented in the Fortran code MINOS 5.0 (May 1985), which
maintains sparse LU factors of the basis matrix as described in Gill et al. (1986b).
The default values of the parameters were used throughout (see Murtagh and
Saunders, 1983), except that PARTIAL PRICE 10 was specified for the last two
problems. Results are also given in the case where the constraints are scaled by an
iterative procedure that makes the matrix coefficients as close as possible to one
(Fourer, 1982).

Table 2

Results from the primal simplex code MINOS 5,0

Optimal No scaling With scaling
objective

Phase I Total Time Phase 1 Total Time

Afiro -464.75314 2 6 0.5 2 6 0.5
ADLittle 225494.96 28 123 1.3 30 98 1.1
Share2b -415.73224 59 9l 1.3 74 121 1.4
Sharelb -76589.319 135 296 3.4 144 260 2.8
Beaconfd 33592.486 8 38 1.9 6 39 1.8
Israel -896644.82 I09 345 5.0 41 231 3.7
BrandY 1518.5099 176 292 4.9 216 377 5.9
E226 -18.751929 109 570 9.4 101 471 7.5
BandM -158.62802 167 362 7.6 280 534 10.0
SCSD6 50.500000 172 521 7.0 180 1168 14.4
NZFRI -27892262. 2166 4131 146.0 942 2371 65.4

Many experiments were made during development of the barrier code, incorporat-
ing different choices for the parameters RGFAC and MUFAC (Section 4.5), which
specify the accuracy of a given subproblem and the rate at which the barrier
parameter is reduced. One aim was to find a set of values that could be used reliably
on all problems. It was found that R G F A C = 0.l and M U F A C = 0 . 1 gave the most

consistent results.
Table 3 summarizes the performance of the barrier method with these values. The

second and third columns of the table give the number of iterations to obtain a
feasible point and the total iterations required to satisfy the convergence tests of
Section 4.6. The fourth column gives the total CPU time (in seconds). The objective
function values found by MINOS 5.0 were used to judge the accuracy of the final
objective in the barrier runs. The underlined digits in the fifth column show the
correct figures in the objective function on termination. The final two columns
indicate the degree of feasibility and optimality of the final point.

Table 4 gives the results of applying the barrier algorithm with the same scaling

procedure as in MINOS 5.0, Note that scaling alters the starting point Ilblle (and

P.E. Gill et al. / Barrier methods for linear programming

T a b l e 3

Bar r i e r m e t h o d

N o sca l ing , R G F A C = 0.1, M U F A C = 0.1

199

P r o b l e m P h a s e 1 To ta l T ime Ob jec t i ve
IIb-Axll

Ilbll
liD(c- A%)II

Ilxll I1~11

Afiro 4 18 0.4 - 4 6 4 . 7 5 3 1 4 10 -11

A D L i t t l e 14 35 1.1 225494.96 t 0 -9

S h a r e 2 b 7 22 1.3 - 4 1 5 . 7 3 2 2 4 10 -8

S h a r e l b 10 54 3.8 - 7 6 5 8 9 . 3 1 9 10 7

B e a c o n f d 21 39 9.0 33592.486 10 -8

Israel 17 49 18.7 - 8 9 6 6 4 4 . 8 2 10 -6

B r a n d Y 19 39 7.8 1518_5099 10 -7

E226 19 44 9.0 - 1 8 . 7 5 1 9 2 9 10 - 6

B a n d M 19 42 9.0 - 1 5 8 . 6 2 8 0 2 10 -6

S C S D 6 1 20 5.4 50 .500000 10 -8

N Z F R I 24 54 53.7 - 2 7 8 9 2 2 6 2 . 10 -5

10-s
10-8

10 9

10-~o

10-9

10- ,o

lO-lO

10 ,o

10-~o

10 -8

10 ~z

T a b l e 4

Bar r i e r m e t h o d

Wi th sca l ing , R G F A C = 0.1, M U F A C = 0 . 1

P r o b l e m Phase 1 Tota l T ime Objec t ive
II b- axl{

Ilbll

II O(c - ATIr)II
{Ixrl {l'rll

Afiro 4 18 0.4 - 4 6 4 . 7 5 3 1 4 10 - I t 10 -8

A D L i t t l e 13 32 1.1 225494.96 10 9 10-9

S h a r e 2 b 8 23 1.4 - 4 1 5 . 7 3 2 2 4 10 -8 10 -9

S h a r e l b 7 33 2.6 - 7 6 5 8 9 . 3 1 9 10 -6 10 u
B e a c o n f d 24 44 9.9 33592.486 10 5 10-10

l s rae l 10 48 18.6 - 8 9 6 6 4 4 . 8 2 10 -6 10 - j ~

B r a n d Y 19 42 8.5 1518.5099 10 -7 10 ,1

E226 18 43 9.0 - 1 8 . 7 5 1 9 2 9 10 -7 10 - l ~

B a n d M 20 42 9.0 - 1 5 8 . 6 2 8 0 2 10 -6 10 - t ~

S C S D 6 1 21 5.7 50 .500000 10 8 10-8

N Z F R I 23 53 53.7 - 2 7 8 9 2 2 6 2 . 10 7 10-J2

all subsequent iterates), but the results are essentially the same as without scaling.
In this regard, the barrier algorithm appears to be more robust than the simplex
method.

Table 5 illustrates the performance of a single-phase barrier method in which a
composite objective function of the form w c V x + ~ was used throughout (see Section
4.2). The number of phase 1 iterations is sometimes greater than that for w = 0 (cf.
Table 4), but the total number of iterations is generally less.

In all cases, the number of iterations required by the barrier algorithm appears
to be qualitatively similar to that reported for various implementations of the
projective method (cf. Tomlin, 1985; and Lustig, 1985).

200 P.E. Gill et al. / Barrier methods for linear programming

Table 5

Barrier method with composite objective function

With scaling, RGFAC = 0.1, MUFAC = 0.1, to = 0.1/II cll

Problem Phase 1 Total Time Objective
IIb-Axll

Ilbll
l i D (c - A%)II

IIxll I1 ~tl

Afiro 4 19 0.4 -464.75314 I0 -I~ 10 8
ADLittle 20 26 1.0 225494.96 10 -8 10 4
Share2b 8 23 1.4 -415.73224 10 8 10-9
Sharelb 9 35 2.9 -76589.319 10 6 10-it

Beaconfd 27 29 8.1 33592.486 10 -5 10 1o
Israel 10 41 15.9 -896644.82 10 6 10-1o

BrandY 25 28 6.4 1518.5099 10 -3 10 ii
E226 23 37 8.5 -18.751929 10 6 10-~o
BandM 26 33 7.9 - 158.62802 10 -6 10 1o

SCSD6 1 20 5.7 50.500000 10 -8 10 8
NZFRI 39 41 51.4 -27892262. 10 5 10 12

Some statistics concerning the matrix factorizations used in MINOS 5.0 and the
barrier method are provided in Table 6. As in Table 1, column "A" gives the number
of nonzeros in the problem. The columns "B" and "L+ U" give the number of
nonzeros in the simplex basis and its LU factors after the last refactorization, which
typically produces the most dense factors. Finally, the column "R" contains the
number of nonzeros in the Cholesky factorization (4.5) required by the barrier
method.

5.2. Per formance on a degenerate test set

T a b l e 7 g i v e s s t a t i s t i c s f o r a g r a d u a t e d s e t o f t h r e e m o d e l s f r o m a s i n g l e a p p l i c a t i o n .

T h e m o d e l s a r e n o t a b l e f o r t h e i r s e v e r e d e g e n e r a c y .

Table 6

Factorization statistics

Problem A B L + U R

Afiro 102 67 67 80
ADLittle 424 261 275 355
Share2b 777 564 597 925

Sharelb 1179 579 636 1345

Beaconfd 3408 1546 1546 2727
Israel 2443 1644 1664 3533 ~

BrandY 2202 1318 1485 3251
E226 2768 1440 1620 3416

BandM 2494 2016 2372 4355
SCSD6 4316 536 581 2398

NZFRI 12840 2290 2400 18029

11259 if six dense columns are included.

P.E. Gill et al. / Barrier methods for linear programming

Table 7

Model statistics--degenerate problem set

Problem Rows Slacks Columns A

Degenl 66 15 72 296
Degen2 444 223 534 4894
Degen3 1503 786 1818 25432

201

These problems were solved using an early version of the barrier algorithm with
a more relaxed termination criterion (i.e., the final iterate was an "approximate"
solution of the linear program). Specifically, the barrier algorithm terminated when
maxi Ix jl ~< 10-711cll IIxlP, i.e., when complementarity was approximately achieved.
Problems Degenl and Degen2 were solved on an IBM 3033N, and Degen3 was run

on an IBM 3081K.
The primal simplex code used was Ketron's WHIZARD optimizer, which was

called from MPSIII in all cases except for Degen3, where the host was MPSX/370.
The first two columns of Table 8 give the number of simplex iterations required to
reach optimality, and the CPU time in seconds.

The next three columns of Table 8 give the results for the barrier algorithm.
Because WHIZARD is written in assembly language, a factor 3' is included in the
times for the barrier method to represent the comparison of Fortran to assembly
language. In many applications, it is accepted that a factor of two in speed (corre-
sponding to y = ~) can be gained by programming in assembly language (see, e.g.,
Bentley, 1982). However, for inner loop optimization of dense floating-point scalar
products, the IBM Fortran compiler with the highest level of optimization (used in
all the runs reported in this paper) produces such efficient code that little scope
remains for improvement by using assembly language, i.e., 3'~ 1 (Moler, 1985).
Because of this uncertainty, no absolute conclusions about the speeds of the simplex
and barrier methods can be drawn from Table 8.

However, one trend clearly emerges from the final column of Table 8, which
contains the ratio of the time required by the barrier algorithm to the time required
by the simplex method. For the degenerate problems, this ratio increases with
problem size, so that the barrier algorithm becomes relatively less efficient for the

larger problems.

Table 8

Degenerate problem set

Simplex Barrier Ratio
Iterations Time Phase 1 Total Time (B / S)

Degenl 23 0.7 2 15 0.97 1.287
Degen2 2650 31.2 13 26 54.93, 1.763,
Degen3 8889 226.0 11 25 528.07 2.347

202 P.E. Gill et aL / Barrier methods for linear programming

A reason for this trend is suggested by the statistics in Table 9. The first three
columns give the number of non-zeros in a typical basis B, the number of non-zeros
in the LU factorization, and their ratio; the last three columns give the number of
non-zeros in the original matrix A, the number of non-zeros in the Cholesky factor
R of AD2A -r, and their ratio.

Comparing columns 3 and 6, we see that the relative increase in density of the
LU factorization is approximately constant as problem size increases, while the
relative density of the Cholesky factor increases with problem size. The resulting
increased cost of solving the least-squares subproblem in the barrier method provides
some explanation for the trend noted in Table 8. However, it is obvious that for
certain structures in A, the relative increase in density of the Cholesky factor will
remain constant as problem size increases, and that the performance of the barrier
algorithm will consequently improve relative to the simplex method on such problems
as size increases.

An important feature that does not appear in the tables is the substantial time
needed for the single execution of the symbolic ordering subroutine GENQMD:
13.4 seconds for Degen2 (24% of the total) and 237 seconds for Degen3 (43%).
Clearly, a more efficient means of preprocessing must be found for large problems.
(An improved procedure has recently been given by Liu, 1985.)

5.3. Early termination of the barrier algorithm

Because of relations (2.4) and (2..5), a "nearly optimal" solution can be obtained
by early termination of the barrier algorithm. In contrast, it is well known that early
termination of the simplex method does not necessarily produce a "good approxima-
tion" to the optimal solution. (This observation emphasizes the fundamental
difference in the iterative sequences generated by a combinatorial algorithm like
the simplex method and a nonlinear algorithm like the barrier method.)

Table 10 gives the numbers of iterations when the barrier algorithm of Table 4
was terminated "ear ly"--wi th two figures, three figures and "optimal" accuracy
(approximately six correct digits) in the objective function. The results indicate that
almost one-half the work of the barrier algorithm can be saved by terminating early,
if an inaccurate solution is acceptable. As many authors have noted, this suggests the
possibility of using a barrier algorithm to identify the correct active set, and then
switching to the simplex method (say) to obtain the final solution.

Table 9

Factorization s t a t i s t i c s ~ e g e n e r a t e problem set

Problem B L + U (L+ U) / B A R R / A

Degen I 249 251 1.0 296 514 1.7
Degen2 3076 3718 1.2 4894 16243 3.3
Degen3 18468 20322 1.1 25432 119373 4.7

P.E. Gill et al. / Barrier methods.for linear programming

Table 10
Early termination of barrier algorithm

203

Problem Two T h r e e "Optimal"
digits digits accuracy

Afiro 10 12 18
ADLittle 22 24 32
Share2b 13 15 23
Sharelb 19 23 33
Beaconfd 32 37 44
Israel 29 34 48
Brandy 27 35 42
E226 29 34 43
BandM 31 35 42
SCSD6 13 15 21
NZFRI 33 39 53

5.4. Ob ta in ing an opt imal basic solution

By its very nature, a barrier method can at best terminate somewhere "close" to
an optimum. We must then ask: how close is "close", and which of the several

characterizations of LP optimality are we close to achieving?

In practice, LP users (and their report-writing programs) expect alleged optimal

solutions to be both primal and dual feasible, thus exhibiting complementary

slackness. The last columns in Tables 3-5 show that the barrier algorithm can attain

complementary slackness to high precision. However, LP users also expect their

solutions to be basic. A basic solution can be achieved by taking the final solution

from the barrier algorithm and processing it through the BASIC procedure common

to most mathematical programming systems.
The BASIC procedure (sometimes known as INSERT-by-value; see Benichou et

al., 1977) takes a set of variable names and values and produces a basic solution

that has at least as good an objective value or sum of infeasibilities. The simplex

method may then be applied to reach optimality. The time required by the BASIC
procedure and the post-BASIC simplex iterations provides a practical measure of

closeness to optimality of the barrier solution.
Some experiments of this kind were performed on all of the test problems, using

the near-optimal solutions obtained by the barrier algorithm and treating components
less than 10 6 as zero. With ~ denoting the basic solution obtained by BASIC, the

quantities IIb-Axll/Hb[I were less than 10 -5 in all cases, and the values of [cX~ -

cT x* l / l cTx .1 were all less than 10 -3. Clearly, the primary effect of the post-BASIC

simplex iterations is to remove dual infeasibilities.
The number of post-BASIC simplex iterations appears to be a function of size

and degeneracy. For the test set in Table 1, only a small number of post-BASIC

simplex iterations were required to reach optimality: at most 6 for the first nine

problems, 61 for SCSD6, and 37 for NZFRI. (Note that PRESOLVE was applied

to NZFRI prior to BASIC; see Section 5.5.)

204 P.E. Gill et al. / Barrier methods Jbr linear programming

For Degen2 and Degen3, the post-BASIC simplex iterations comprised 11% and
7% of the simplex iterations required when starting from scratch. Thus, the relative
number of post-BASIC simplex iterations required for these problems appears to
decline with problem size, compared to the number required by WHIZARD to solve
the problems from scratch. The total time required by BASIC and post-BASIC
simplex iterations was about 25% of the total time required when starting from
scratch.

It would be of interest to perform further experiments with BASIC, starting from
the "early termination" points referred to in Table 10. The results already obtained
suggest that the combined barrier/BASIC/simplex approach would often be more
effective than either the barrier or simplex algorithms alone.

5.5. Null variables

In practice, linear programs are often structurally degenerate, in the sense that
certain variables (called null variables) must be zero in any feasible solution. For
example, the problems BrandY, E226, BandM and NZFRI have 23, 20, 21 and 1477
null variables respectively, as determined by the PRESOLVE procedure in
WH IZARD. Ideally, such variables should be removed before a solution procedure
is called. They can then be restored and dual feasibility attained by the POSTSOLVE
procedure (see Tomlin and Welch, 1983).

As an example, when WHIZARD was applied to the problem NZFRI, only 552
simplex iterations were required to solve the reduced problem--a substantial
improvement over the results in Table 2. (The total time, including PRESOLVE and
POSTSOLVE, was 9.5 seconds on an IBM 3081K.)

In our experience, failure to remove large numbers of null variables usually results
in many iterations by the simplex method, but not for our particular implementation
of the barrier algorithm. This is another area (as with scaling) where the barrier
approach appears to be more robust than the simplex method.

6. Future developments and conclusions

6.1. Solving the least-squares subproblem

The present implementation, as in Gay (1985), uses a preconditioned conjugate-
gradient method to solve the relevant least-squares subproblems. This approach
allows the use of existing software for computing Cholesky factors, and provides a
convenient way of dealing with a few dense columns of A that would degrade the
sparsity of those factors. Perhaps further efficiency could be gained by discarding
small nonzeros in the product AD2A v (not just rows and columns of A) before
computing its Cholesky factors. However, a new symbolic factorization would then
be required at every stage, not just once.

P.E. Gill et al. / Barrier methods for linear programming 205

Our experiments indicate that the preconditioner must be of high quality
throughout in order to retain efficiency in the conjugate-gradient method. An
iteration of LSQR or the conjugate-gradient method requires two matrix-vector
products involving A and two solves with the preconditioner R, and is therefore as
expensive (typically) as two iterations of the simplex method. To see the relevant
tradeoffs, assume that R could be obtained with minimal effort, but that LSQR
required an average of 20 iterations to converge; then the barrier method would be
similar in speed to the simplex method if it terminated in about 4~oth the number of
iterations.

The effect on speed of excluding dense columns from the preconditioner can be
seen in the test problem Israel, which has six dense columns in A. With these
excluded from the computat ion of R, LSQR required an average of 10 iterations to
converge, indicating inaccuracy in the preconditioner. On the other hand, retaining
all columns decreased the number of LSQR iterations, but produced an R with
three times as many nonzeros, and hence doubled the execution time.

For reasons such as these, much research is needed concerning the computation
of good preconditioners for arbitrary sparse matrices DA T, i.e., for arbitrary linear
programs. (For some suggested approaches based on the LU factorization, see Gill
et al., 1986a.) There is reason to be optimistic for certain p rob lems- - for example,
those exhibiting a block-triangular structure with many small diagonal blocks.

In place of the iterative methods just described, one can employ a sparse
orthogonal factorization of the form

DAV=Q(R) , QTQ=I, R upper triangular (6.1)

to solve the least-squares problems directly, where R is analytically the same as the
Cho[esky factor of AD2A r. General-purpose software exists for this computation,

in particular SPARSPAK-B (George and Ng, 1984), which has excellent numerical
properties and is able to treat dense rows of DA ~ specially in order to preserve the
sparsity of R. Its use in this context merits future investigation.

A further direct approach is to apply a sparse indefinite solver to the symmetric
system (2.11). The MA27 package of Duff and Reid (1982, 1983) is applicable, and
as with the sparse QR (6.1), a single symbolic factorization serves all iterations. The
dense artificial column can be excluded from the factorization and treated by
partitioning. Unfortunately, on the problems of Table 1, the symbolic factors have
proved to be twice as dense as R in (4.5), and the severe indefiniteness of (2.11)
leads to numerical factors that are 3 to 10 times as dense as R. Hence, our initial
experience with this approach has been unpromising.

6.2. Adjusting the barrier parameter

Numerous authors have suggested extrapolation techniques in connection with
barrier functions (see, e.g., Fiacco and McCormick, 1968; Fletcher and McCann,
1969). (Note that an extrapolation strategy would need to be applied to both phases.)

2 0 6 P.E. Gill et al. / Barrier methods Jbr linear programming

In a small number of our experiments, extrapolation was performed after a
reasonably accurate minimization of the barrier function for two quite large values
of t*(llcll/n and 0.1[Icll/n). The resulting solutions were typically accurate to about
five figures. However, it is difficult to evaluate the practical merits of this approach
without further study.

A number of suggestions have been made for automating the choice of p,. The
method of centers (see Fiacco and McCormick, 1968; Huard, 1967) is in essence a
barrier-function method in which a transformation is also applied to the objective
function. Although an explicit barrier parameter is thereby avoided, another
parameter must be chosen in order for the procedure to be effective. See Todd
and Burrell (1985) for further discussion of this approach.

In our view, the freedom to choose / , may well be an asset, especially in solving
linear programs. This is confirmed by our experience with the conservative strategy
of allowing/~ to be reduced only occasionally. Considerable progress is then often
achieved before the least-squares problems become unduly ill-conditioned.

6.3. Use of the entropy function

Because of the similarities, we note the work of many authors on incorporating
the entropy function into linear programming models. In place of subproblem (2.3),
one can consider the subproblem

minimize cTx + I~ ~ Xj In xj
x r Ir~" j - I

subject to Ax = b,

where the scalar / , (/~ > 0) is again specified for each subproblem. Erlander (1977)
reviews problems of this kind and suggests Newton-type methods for their solution.
Computational algorithms have been developed by Eriksson (1980, 1981, 1985).

If a feasible-point descent method is applied as in Section 2, the Newton search
direction and Lagrange-multiplier estimates satisfy the system

in place of (2.12), where D = diag(xj) and v has components t~ = 1 +In xj. A least-
squares subproblem follows as before. In the algorithm of Section 4.1, r becomes
D1/2(TI + txv) in steps 1, 3 and 5, D becomes D ~/2 in the least-squares problem (4.1),
and p = - (1 / tx)D~/2 r in step 5.

The entropy function is convex and (unlike the logarithmic barrier function)
bounded below. Since its Hessian is ~ D -~ rather than /xD 2, the least-squares
problems are better conditioned as the LP solution is approached. Further computa-
tional work therefore seems to be justified, either as in Eriksson (1980, 1981, 1985)
or along the lines suggested here.

6.4. Conclusions

Our experience with the barrier method suggests several conclusions. On the

P.E. Gill et al. / Barrier methods for linear programming 207

positive side:

�9 A significant body of computational evidence indicates that for general non-
trivial linear programs, a general harrier method can be comparable in speed to the
simplex method;

�9 In some cases the barrier method will be faster than the simplex method (even
substantially so), and its advantage will increase on problems in which the least-
squares subproblems can be solved rapidly. Furthermore, since we deliberately used
the same parameters on all test problems, there is much scope for "tuning" the
algorithm on particular problem classes;

�9 The mathematical and qualitative relationship between the projective and
barrier methods places this approach to linear programming in a well understood
context of nonlinear programming, and provides an armory of known theoretical
and practical techniques useful in convergence analysis and implementation.

On the negative side:
�9 The barrier method has not been consistently faster than the simplex method

on general unstructured problems, and has been considerably slower on certain
examples. Furthermore, its efficiency relative to the simplex method may decrease
with size on problems for which the density of the Cholesky factor increases more
rapidly than that of the L U factorization;

�9 "Nonlinearizing" a linear problem makes the development of a robust general-
purpose algorithm more difficult. For example, extreme nonlinearity near the boun-
dary of the feasible region can lead to poor performance if variables migrate
prematurely toward their bounds, or if a "good" starting point is available from an
earlier run on a similar problem. Furthermore, nonlinear algorithms typically display
wide variations in performance, depending on the selection of various parameters.

Finally, we make the following general observations:
�9 Most qualitative aspects of Karmarkar's projective method can be found in the

projected Newton barrier method;
�9 No attempt has been made to date to obtain a proof of polynomial complexity

for any version of the barrier algorithm;
�9 The efficiency of the projective and barrier methods depends critically on fast,

stable techniques for solving large-scale least-squares problems. Modern sparse-
matrix technology is absolutely crucial in any further development of these methods
for large-scale linear programming;

�9 There is much promise for interior-point approaches to linear programming,
particularly for specially-structured problems.

Acknowledgements

The authors are grateful to George B. Dantzig for his encouragement and biblio-
graphical assistance, and to Irvin Lustig for his helpful and timely suggestions. We

also thank the referees for their comments.

208 P.E. Gill et al. / Barrier methods for linear programming

References

M. Benichou, J.M. Gauthier, G. Hentges and G. Ribi~re, "The efficient solution of large-scale linear
programming problems--some algorithmic techniques and computational results," Mathematical Pro-
gramming 13 (1977) 280-322.

J.L. Bentley, Writing Efficient Programs (Prentice-Hall, Englewood Cliffs, N J, 1982).
R.P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N J, 1973).
G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, N J, 1963).
J.J. Dongarra and E. Grosse, "Distribution of mathematical software via electronic mail," SIGNUM

Newsletter 20 (1985) 45-47.
I.S. Duff and J.K. Reid, "MA27--a set of Fortran subroutines for solving sparse symmetric sets of linear

equations," Report AERE R-10533, Computer Science and Systems Division, AERE Harwell (Harwell,
England, 1982).

I.S. Duff and J.K. Reid, "The multifrontal solution of indefinite sparse symmetric linear equations,'"
ACM Transactions on Mathematical Software 9 (1983) 302-325.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman, "'Yale sparse matrix package I: The
symmetric codes," International Journal of Numerical Methods in Engineering 18 (1982) 1145-1151.

J. Eriksson, "A note on solution of large sparse maximum entropy problems with linear equality
constraints," Mathematical Programming 18 (1980) 146-154.

J. Eriksson, "'Algorithms for entropy and mathematical programming," Ph.D. Thesis, Linkrping Univer-
sity (Link6ping, Sweden, 1981).

J. Eriksson, "'An iterative primal-dual algorithm for linear programming," Report LiTH-MAT-R-1985-10,
Department of Mathematics, Linkrping University (Link6ping, Sweden, 1985).

S. Erlander, "Entropy in linear programs--an approach to planning," Report LiTH-MAT-R-77-3,
Department of Mathematics, Link6ping University (Linkrping, Sweden, 1977).

A.V. Fiacco, "Barrier methods for nonlinear programming," in: A. Holzman, ed., Operations Research
Support Methodology (Marcel Dekker, New York, NY, 1979) pp. 377-440.

A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization
Techniques (John Wiley and Sons, New York, 1968).

R. Fletcher, Practical Methods of Optimization, Volume 2 (John Wiley and Sons, Chichester, 1981).
R. Fletcher and A.P. McCann, "Acceleration techniques for nonlinear programming," in: R. Fletcher,

ed., Optimization (Academic Press, London, 1969) pp- 203-213.
R. Fourer, "Solving staircase linear programs by the simplex method, 1: Inversion," Mathematical

Programming 23 (1982) 274-313.
K.R. Frisch, "The logarithmic potential method of convex programming," University Institute of

Economics (Oslo, Norway, 1955).
K.R. Frisch, "Linear dependencies and a mechanized form of the multiplex method for linear program-

ming," University Institute of Economics (Oslo, Norway, 1957).
O. Garcia, "FOLPI, a forestry-oriented linear programming interpreter," Reprint 1728, New Zealand

Forest Service (Christchurch, New Zealand, 1984).
D.M. Gay, "Solving sparse least-squares problems," Presentation, Department of Operations Research,

Stanford University (Stanford, CA, 1985).
J.A. George and J.W.H. Liu, Computer Solution of Large Sparse Positive Definite S~:stems (Prentice-Hall,

Englewood Cliffs, N J, 1981).
J.A. George and E. Ng, "'A new release of SPARSPAK--the Waterloo sparse matrix package," SIGNUM

Newsletter 19 (1984) 9-13.
P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "'Sparse matrix methods in optimization," SIAM

Journal on Scientific and Statistical Computing 5 (1984) 562-589.
P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "'A note on nonlinear approaches to linear

programming," Report SOL 86-7, Department of Operations Research, Stanford University (Stanford,
CA, 1986a).

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "'Maintaining LU factors of a general sparse
matrix," Report SOL 86-8, Department of Operations Research, Stanford University (Stanford, CA,
1986b). [To appear in Linear Algebra and its Applications.]

P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, London, 1981).

P.E. Gill et al. / Barrier methods for linear programming 209

M.T. Heath, "Numerical methods for large sparse linear least squares problems," SIAM Journal on
Scientific and Statistical Computing 5 (1984) 497-513.

J.K. Ho and E. Loute, "A set of staircase linear programming test problems," Mathematical Programming
20 (1981) 245-250.

A.J. Hoffman, M. Mannos, D. Sokolowsky, and N. Wiegmann, "Computational experience in solving
linear programs," Journal of the Society for Industrial and Applied Mathematics 1 (1953) 17-33.

P. Huard, '~ of mathematical programming with nonlinear constraints by the method of
centres," in: J. Abadie, ed., Nonlinear Programming (North-Holland, Amsterdam, 1967) pp. 207-219.

K. Jittorntrum, Sequential Algorithms in Nonlinear Programming, Ph.D. Thesis, Australian National
University (Canberra, Australia, 1978).

K. Jittorntrum and M.R. Osborne, "Trajectory analysis and extrapolation in barrier function methods,"
Journal of Australian Mathematical Society Series B 20 (1978) 352-369.

N. Karmarkar, "A new polynomial-time algorithm for linear programming," Proceedings of the 16th
Annual ACM Symposium on the Theory of Computing (1984a) 302-311.

N. Karmarkar, "A new polynomial-time algorithm for linear programming," Combinatorica 4 (1984b)
373-395.

L.G. Khachiyan, "'A polynomial algorithm in linear programming," Doklady Akademiia Nauk SSSR
Novaia Seriia 244 (1979) 1093-1096. [English translation in Soviet Mathematics Doklady 20 (1979)
191-194.]

J.W.H. Liu, "Modification of the minimum-degree algorithm by multiple elimination," ACM Transactions
on Mathematical Software 11 (1985) 141-153.

I.J. Lustig, "'A practical approach to Karmarkar's algorithm," Report SOL 85-5, Department of Operations
Research, Stanford University (Stanford, CA, 1985).

R. Mifflin, "'On the convergence of the logarithmic barrier function method," in: F. Lootsma, ed.,
Numerical Methods for Non-Linear Optimization (Academic Press, London, 1972) pp. 367-369.

R. Mifflin, "'Convergence bounds for nonlinear programming algorithms," Mathematical Programming
8 (1975) 251-271.

C.B. Moler, Private communication (1985).
W. Murray and M.H. Wright, "Efficient linear search algorithms for the logarithmic barrier function,"

Report SOL 76-18, Department of Operations Research, Stanford University (Stanford, CA, 1976).
B.A. Murtagh and M.A. Saunders, "MINOS 5.0 user's guide," Report SOL 83-20, Department of

Operations Research, Stanford University (Stanford, CA, 1983).
J.M. Ortega and W.C. Rheinboldt, lterative Solution of Nonlinear Equations in Several Variables (Academic

Press, New York, NY, 1970).
C.C. Paige and M.A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least-

squares," ACM Transactions on Mathematical Software 8 (1982a) 43-71.
C.C. Paige and M.A. Saunders, "Algorithm 583. LSQR: Sparse linear equations and least squares

problems," ACM Transactions on Mathematical Software 8 (1982b) 195-209.
M.J. Todd and B.P. Burrell, "'An extension of Karmarkar's algorithm for linear programming using dual

variables," Report 648, School of Operations Research and Industrial Engineering, Cornell University
(Ithaca, NY, 1985).

J.A. Tomlin, "An experimental approach to Karmarkar's projective method for linear programming,"
Manuscript, Ketron Inc. (Mountain View, CA, 1985). [To appear in Mathematical Programming
Studies.]

J.A. Tomlin and J.S. Welch, "Formal optimization of some reduced linear programming problems,"
Mathematical Programming 27 (1983) 232-240.

C.B. Tompkins, "Projection methods in calculation," in: H.A. Antosiewicz, ed., Proceedings of the Second
Symposium in Linear Programming (United States Air Force, Washington, DC, 1955) pp. 425-448.

C.B. Tompkins, "Some methods of computational attack on programming problems, other than the
simplex method," Naval Research Logistics Quarterly 4 (1957) 95-96.

R.J. Vanderbei, M.S. Meketon and B.A. Freedman, "A modification of Karmarkar's linear programming
algorithm," Manuscript, AT&T Bell Laboratories (Holmdel, N J, 1985).

J. von Neumann, "On a maximization problem," Manuscript, Institute for Advanced Study (Princeton,
N J, 1947).

