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Interest in linear programming has been intensified recently by Karmarkar 's  publication in 1984 
of  an algorithm that is claimed to be much faster than the simplex method for practical problems. 
We review classical barrier-function methods for nonlinear programming based on applying a 
logarithmic transformation to inequality constraints. For the special case of linear programming, 
the t ransformed problem can be solved by a "projected Newton barrier" method. This method 
is shown to be equivalent to Karmarkar 's  projective method for a particular choice of the barrier 
parameter.  We then present details of  a specific barrier algorithm and its practical implementation. 
Numerical  results are given for several non-trivial test problems, and the implications for future 
developments  in linear programming are discussed. 
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I. Introduction 

Interest in linear programming methods arises in at least two different contexts: 
theoretical and practical. The long-established simplex method, developed by G.B. 
Dantzig in the late 1940's, has been known from the beginning to be of combinatorial 
complexity in the worst case. However, in practice it tends to require a number of 
iterations that is approximately linear in the problem dimension. The linear algebraic 
work associated with the simplex method typically involves an LU factorization 
of a square matrix (the basis). Each iteration involves the solution of two linear 
systems, followed by an update of the basis factors (to reflect replacement of one 
column). The factorization is periodically recomputed rather than updated, to 
preserve accuracy and to condense the factors. Although linear programs are often 
very large, the constraint matrix is normally very sparse. Sparse-matrix techniques 
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have developed to the point where the factorization and updates required in the 
simplex method can be performed not only rapidly, but also with assured numerical 
stability (see the survey by Gill et al., 1984). From a practical viewpoint, these two 
features--a typically linear number of iterations, and fast methods for performing 
each iteration--imply that the simplex method is an effective and reliable algorithm 
for linear programming, despite its seemingly unfavorable complexity. 

Many researchers, beginning with Dantzig himself, have observed the apparently 
unsatisfactory feature that the simplex method traverses the boundary of the feasible 
region. From the outset, attempts have been made to develop practical linear 
programming methods that cross the interior of the feasible region--for  example, 
yon Neumann (1947), Hoitman et al. (1953), Tompkins (1955, 1957) and Frisch 
(1957). Such methods have sometimes involved the application of nonlinear tech- 
niques to linear programs. However, none of these methods has previously been 
claimed, even by its developers, to be competitive in speed with the simplex method 
for general linear programs. 

On the theoretical side, researchers attempted for many years to develop a linear 
programming algorithm with only polynomial complexity. In 1979, to the accompani- 
ment of wide publicity, this issue was resolved when Khachiyan (1979) presented 
a worst-case polynomial-time method based on a nonlinear geometry of shrinking 
ellipsoids. Although initially it was thought that the ellipsoid methods might be as 
fast in practice as the simplex method, these hopes have not been realized. Broadly 
speaking, there are two major difficulties: first, the number of iterations tends to be 
very large; second, the computation associated with each iteration is much more 
costly than a simplex iteration because sparse-matrix techniques are not applicable. 

Within the past two years, interest in linear programming has been intensified by 
the publication (Karmarkar, 1984a, b) and discussion of a linear programming 
algorithm that is not only polynomial in complexity, but also is claimed to be much 
.faster than the simplex method for practical problems. 

In Section 2, we first examine the well known barrier-function approach to solving 
optimization problems with inequality constraints, and derive a representation for 
the Newton search direction associated with the subproblem. In Section 3, we show 
a formal equivalence between the Newton search direction and the direction associ- 
ated with Karmarkar's (1984a, b) algorithm. Section 4 describes a complete interior- 
point method for linear programming based on the barrier transformation, and 
Section 5 gives some numerical results obtained with a preliminary implementation 
of that method. The implications of these results and directions for future research 
are discussed in Section 6. 

1.2. Notation 

The term projective method will denote the algorithm given by Karmarkar 
(1984a, b) for the special linear program (3.1); see below. The term barrier method 
will often be used as an abbreviation for projected Newton barrier method. The vector 
norm I1" II will always denote the Euclidean norm IIv[[2= (vrv) 1/2. 
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2. A barrier-function approach 
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2.1. Applying a barrier transformation to a linear program 

Barrier-function methods treat inequality constraints by creating a barrier function, 
which is a combination of  the original objective function and a weighted sum of 
functions with a positive singularity at the constraint boundary. (Many barrier 
functions have been proposed; we consider only the logarithmic barrier function, 
first suggested by Frisch, 1955.) As the weight assigned to the singularities approaches 
zero, the minimum of the barrier function approaches the minimum of  the original 
constrained problem. Barrier-function methods require a strictly feasible starting 
point for each minimization, and generate a sequence of strictly feasible iterates. 
(For a complete discussion of barrier methods, see Fiacco, 1979; both barrier and 
penalty function methods are described in Fiacco and McCormick, 1968. Brief 
overviews are given in Fletcher, 1981; and Gill, Murray and Wright, 1981.) 

We consider linear programs in the following standard form: 

minimize cVx xG~q~ n 

(2.1) 
subject to Ax  = b, x>10, 

where A is an m x n matrix with m ~ n. Let x* denote the solution of (2.1), and 
note that 

C --~ A T T r *  + r / * ,  (2.2a) 

r/* I> 0, (2.2b) 

r /~x*=0,  j = l , . . . , n ,  (2.2c) 

where rr* and r/* are Lagrange multipliers associated with the constraints Ax = b 
and x/> 0 respectively. The problem is said to be primal nondegenerate if exactly m 
components of x* are strictly positive, and dual nondegenerate if exactly n - m  
components of r/* are strictly positive. 

When applying a barrier-function method to (2.1), the subproblem to be solved is: 

minimize F(x)  =- cVx- / x  i In xj 
x ~ R "  j =  1 

(2.3) 
subject to Ax  = b, 

where the scalar/~ (IX > 0) is known as the barrier parameter and is specified for 
each subproblem. The equality constraints cannot be treated by a barrier transforma- 
tion, and thus are handled directly. 

If x*(/x) is the solution of (2.3), then x*( /x)~  x* as ix ~ 0 (see, e.g., Fiacco and 
McCormick, 1968). Very strong order relations can be derived concerning x*(p~) 
and cXx*(ix) (see, e.g., Mifflin, 1972, 1975; Jittorntrum, 1978; Jittorntrum and 
Osborne, 1978). In particular, when (2.1) is primal nondegenerate, 

]]x*(Iz) - x*]] = O(tz) (2.4a) 
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for sufficiently small p, When (2.1) is primal degenerate, the corresponding relation 

is 

[ I x * ( ~ )  - x* l l  - -  o ( , / - f f ) .  (2.4b) 

The optimality conditions for (2.3) imply that at x = x*(/x), there exists a vector 
7r(#) such that 

c = AVTr(tx) + i~D-'e, (2.5) 

where 

D =diag(xi) ,  j = 1 , . . . ,  n, (2.6) 

and e =  (1, 1 , . . . ,  1) w. Comparing (2.5) and (2.2), we see that if (2.1) is primal 

nondegenerate, 7r(/x)~ 7r* as /x ~0 ,  and 

lira ~z _ r/j*. ( 2 . 7 )  
. -o  x*(o) 

2.2. Solution of the subproblem 

Given a linearly constrained problem of the form 

minimize F(x) subject to Ax= b, (2.8) 

a standard approach is to use a feasible-point descent method (see, e.g., Gill, Murray 
and Wright, 1981). The current iterate x always satisfies Ax = b, and the next iterate 

.{ is defined as 

.g = x + c~p, (2.9) 

where p is an n-vector (the search direction ), and ~ is a positive scalar (the steplength). 
The computat ion of p and a must ensure that A.~ = b and F(.~) < F(x). 

The Newton search direction associated with (2.8) is defined as the step to the 
minimum of the quadratic approximation to F(x) derived from the local Taylor 
series, subject to retaining feasibility. Thus, the Newton search direction PN is the 
solution of the following quadratic program: 

minimize grp + ~ pr Hp 

(2.1o) 
subject to Ap=O, 

where g - - -VF(x)  and H---V2F(x).  If  7rN is the vector of Lagrange multipliers for 
the constraints in (2.10), then the required solution satisfies the linear system 

( H  Ar~(--PN~o ]\~rN ] =(0g)" (2.11, 

Note that rrN .converges to the Lagrange multipliers for the constraints Ax = b in 
the original problem (2.8). 
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2.3. The projected Newton search direction 

When F(x )  is the barrier function in (2.3), its derivatives are 

g ( x ) = c - l ~ D  ~e and H(x)=-I~D -2, 

where D is defined by (2.6). Note that g and H are well defined only if xj ~ 0 for 
all jo 

Let p~ (the projected Newton barrier direction) denote the Newton search direction 
defined by (2.11) when F is the barrier function of (2.3). The associated Lagrange 
multipliers will be denoted by 7rB. Since H(x )  is positive definite when x >  0, PB is 
finite and unique, and is a descent direction for F(x) ,  i.e., (c--tzD-~e)Tpn <0.  

It follows from (2.11) that PB and r satisfy the equation 

Rewriting (2.12) in terms of a vector rR defined by Dr~ = - ~ p ~ ,  we see that rE and 
~rB satisfy 

It follows that 7rs is the solution and rs the optimal residual of  the following linear 
least-squares problem: 

minimize I[ O c -  ~ e -  DAT~'[I. (2.14) 

The projected Newton barrier direction is then 

PB = - ( 1 /  tx ) DrB. (2.15) 

For a given positive/x, Newton's  method will eventually reach a domain in which 

the " ideal"  unit step along the direction P8 will be feasible and reduce the barrier 
function. The iterates can thereafter be expected to converge quadratically to x*(~) .  
In general, the smaller ix, the smaller the attractive domain. The algorithm remains 
well defined as p. tends to zero. (The limiting case can be safely simulated in practice 
by using a very small value of/z.)  

Note that feasible-direction methods can be made independent of  the scaling of  

the search direction by appropriate  re-scaling of the steplength c~. We could therefore 
define the barrier search direction as 

Pn = -DrB (2.16) 

for any p, => 0. The " ideal"  step would then be ce = 1//x. 
The barrier search direction (2.16) with /x = 0  in (2.14) is used in an algorithm 

proposed by Vanderbei, Meketon and Freedman (1985). From the above comments,  
we see that such an algorithm has no domain of quadratic convergence. 
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2.4. Upper bounds  

The barrier transformation and the associated Newton search direction can also 
be defined for linear programs with upper and lower bounds on the variables, of  
the form: 

minimize cVx 
X ~ R  n 

subject to A x  = b, l <~ x <~ u. 

The subproblem analogous to (2.3) is 

tl 

minimize c X x - t ,  Y~ l n ( x j - / j ) - / z  ~ ln (u j -x j )  
X E R "  j = l  j - - I  

subject to A x  = b. 

The Hessian of the associated barrier function will be positive definite only if at 
least one of lj or u~ is finite for every j. In this case, the least-squares problem 
analogous to (2.14) is 

minimize II D c -  > / 3 e -  D A  r rrll. 
rr 

Here, the matrices D and /3 are defined by D = diag(aj) and 13= diag(4) ,  where 

a j = l / ( 1 / s 2 + l / t ~ )  ~/2 and 4 = S i ( 1 / s j - 1 / t j ) ,  

with s) = xi - lj and ti = uj - xj. For simplicity, the remainder of the discussion will 
assume that the bounds are of the form in (2.1), i.e., 0~<xj<~oo, except for the 
artificial variable discussed in Section 4.2. 

3. Relationship with Karmarkar's projective method 

In this section, we show the connection between the barrier and projective methods 
when both are applied to a specialized linear program. We assume that the reader 
is familiar with the projective method; a good description is given in Todd and 
Burrell (1985). 

3.1. S u m m a r y  o f  the projective me thod  

In the projective method, the linear program is assumed to be of  the special form 

minimize eVx 
_leER n 

(3.1) 
subject to C x  = O, e T X = 1, X >- O. 

Let x* denote a solution of (3.1). It is also assumed that 

cVx * = 0, (3.2) 
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and that Ce = 0. (These assumptions can always be assured by transforming the 
problem.) 

The optimality conditions for (3.1) imply that 

c = CXAc + eAe + r/, (3.3) 

where rt is the Lagrange multiplier vector for the bound constraints of (3.1). The 
complementarity conditions at x*  imply that 

x~'q. i =0,  j = 1 , . . . ,  n, (3.4) 

where x* denotes the j th  component of x* .  Taking the inner product of c and x* 
and using (3.2)-(3.4), we obtain AeeVx * =0. Since eVx * = 1, it follows that Ae =0. 

Any strictly positive diagonal matrix D defines the following projective trans- 
formations, which relate any strictly feasible point x and the transformed point x': 

1 1 
x '  D-~x ,  x = - -  Dx ' .  (3.5) 

e T D - I x  eTDx ' 

In the projective method, given an iterate x, D is defined as d iag(x~ , . . . ,  xn). (Note 
that D is the same as the diagonal matrix (2.6) associated with the barrier method, 
and that D e  = x.) The next iterate in the transformed space is given by 

~' = x ' -  a 'rK,  (3.6) 

where rK = D C - D C T T r ~ : -  Oe is the optimal residual of the linear least-squares 
problem 

minimize D c - ( D C  T e , ( ~ ) l .  (3.7) 
rr ,  ,,b \O11 

We assume henceforth that ( D C  v e) has full rank, so that the solution of (3.7) is 
unique. (Note that ( D C  T e) and ( C  r e) have full rank if and only if C has full 
rank; the last column is orthogona] to the others in both cases.) The steplengtb a '  
in (3.6) is chosen to ensure strict feasibility of ~' as well as descent in the transformed 
"potential function" (see Karmarkar, 1984a, b, for details). 

The new iterate gK in the original parameter space is obtained by applying the 
transformation (3.5) to ~', so that 

l 
xK - e X D ( x  , - ee'rK ) D ( x ' -  ce'rK ) = y ( x  -- ~DrK ), 

where y is chosen to make eT.~K -- 1. 

3.2. Properties o f  the projective method 

Let 7re denote the solution of the least-squares problem 

minimize IIDc- DCW~rH. 
Tr  

(3.8) 
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Using the normal equations associated with (3.8), observe that 7rc satisfies 

C D 2 C T w c  = C D 2  c. (3.9) 

We also define 

rc  = D e  - D c T T r c ,  (3.10a) 

P,c = x T r c  . (3.10b) 

We now state some properties of various quantities appearing in the projective 
method. 

Lemma 3,1. The so lu t ion  o f  (3.7) is r = 7re a n d  4~ = c T x / n .  

Proof. From the normal equations associated with (3.7) and the relation Cx = 0, 
we see that ~'K and ~b satisfy 

CD2CTT"rK = CD2r eTec~ = cTx.  (3.1 1) 

Since the solution of (3.7) is unique, comparison of (3.9) and (3.11) gives the result 
directly. [] 

Lemma 3,2. In  the p ro j ec t i v e  m e t h o d ,  

1 
r K = r C - d p e ,  ~ = n a ' ,  Y -  1 + o ~ ( & - # c ) '  

a n d  the  n e w  i terate  m a y  be wr i t t en  as  

PK = I~c,X - D r c ,  ~K = x + J T P K .  

Proof. The result follows from algebraic manipulation of the relevant formulae. [] 

3,3. R e l a t i o n s h i p  wi th  the  barr ier  search  d i rec t ion  

When the barrier method is applied to problem (3.1), it follows from (2.14) and 
(2.15) that the search direction is given by 

1 
PB = - - -  D r y ,  

where 

rB = D c  - i.te - D c T ~ B  -- OBDe, 

with 7ru and 0B taken as the solution of 

minimize D c - / ~ e - D ( C  w e ) ( ~ I .  (3.12) 

h 

qr, 0 \ o / I  

The new iterate is then defined as 

XB = X + apB , 

for some steplength a. We assume now that (C w e) has full rank, so that the solution 
of (3.12) is unique. 
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Lemma 3.3. I f  the barrier parameter  is chosen to be Ix = Ixc, then OB = 0 and  7rB = rrc. 

Proof. The normal equations associated with (3.12) and the relation C x  = 0 imply 
that ~'H and 0B satisfy 

CD2CrrrR  + CD2eOB = CD2c, x T D c T ~ R  + (xTx) OR = x T D c  -- IX. 

(3.13) 

When IX = Ixc, direct substitution using (3.9) and (3.10) shows that (3.13) is satisfied 
for 7rB=Trc and 0n=0 .  Since the solution of (3.13) is unique, this proves the 
lemma. 17 

Lemma 3.4. I f  IX = Ixc, then 

rt~ = rc - Ixce, PR = 1_~ (ixcX - Dr c  ), 
I xc  

xu = x + apu. 

Proof. As in Lemma 3.2, the result is obtained by algebraic manipulation. [] 

Compar ing Lemmas 3.2 and 3.4, the main result now follows. 

Theorem 3.1. Suppose that the projective me thod  and the barrier method  are applied 

to problem (3.1), using the same  initial point. I f  the barrier parameter  is tx = Ixc, the 

search directions Po and  PK are parallel. Further, i f  the steplengths satisfy a = ~Yixc ,  

the iterates -fu and  2K are identical. 

Theorem 3.1 is an existence result, showing that a special case of the barrier 
method would follow the same path as the projective method. This does not mean 

that the barrier method should be specialized. For example, the value Ixc is an 
admissible barrier parameter  only if it is positive. Note that /xc  is positive initially, 

if the starting point Xo is a multiple of e. Furthermore, Ixc tends to zero as the 
iterates converge to x* ,  and could therefore be a satisfactory choice for the barrier 
algorithm as the solution is approached. 

Similarly, as the barrier method converges to a solution of the original problem 
for any suitable sequence of barrier parameters,  0B will converge to Ae, which is 
zero. This is consistent with the choice /x =/Zc, which gives 0B = 0 directly. 

4. A projected Newton barrier algorithm 

In this section, we give details of the barrier algorithm used to obtain the numerical 
results of  Section 5. The algorithm applies to problems of the standard form (2.1). 
Each iteration is of  the form Y~ = x + ap (2.9), where the search direction is PB defined 
by (2.14)-(2.15), and the barrier parameter  m a y  be changed at ever 3, iteration. Any 
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tolerances described are intended to be suitable for machines whose relative precision 
is about  10 -15 . 

Alternative approaches  to certain parts of  the algorithm are discussed in 

Section 6. 

4.1. The iteration 

At the start o f  each iteration, the quantities IX, x, 7r and r/ are known,  where 
IX > 0, x >  0, A x  = b, and r / =  c - A X ~ .  For computa t ional  reasons we compute  a 
correction to 7r at each stage, since a good  estimate is available from the previous 

iteration. The main steps o f  the iteration then take the following form. 
1. Define D = d i a g ( x j )  and compute  r =  Dr / - i xe .  Note that r is a scaled version 

of  the residual from the optimality condit ion (2.5) for the barrier subproblem,  and 

hence that Ilrll =0  if x = x*(tz). 
2. Terminate if IX and Ilrl[ are sufficiently small. 
3. I f  appropriate ,  reduce IX and reset r. 
4. Solve the least-squares problem 

minimize II r -  DAVc37r I[" (4.1) 
8~r 

5. Compute  the updated  vectors 7r ~- 7r + ,5~r and r/~- r / -  AT3~ -. Set r = D r / -  Ixe 

(the updated  scaled residual) and p = - ( 1 ~ I x ) D r  (cf. (2.14) and (2.15)). 

6. Find aM, the max imum value of  a such that x+o~p>~O. 

7. Determine a steplength a c (0, aM) at which the barrier function F ( x  + ap)  is 

suitably less than F ( x ) .  

8. Update  x ,- x + ap. 

All iterates satisfy A x  = b and x > 0. The vectors 7r and r/ approximate  the dual 

variables ~-* and reduced costs r/* o f  the original linear program (cL (2.2) and (2.5)). 

4.2. The feasibility phase 

In order  to apply the barrier algorithm to (2.1), a strictly feasible starting point  

is necessary. Such a point  may be found by the following " t ex tbook"  phase 1 

procedure  in which a barrier method is applied to a modified linear program. For 

any given initial point  x0>O, we define r b - A x o  with [[s[] = 1, and solve the 
modified linear program 

minimize 
x,r 

subjec t to  (A s ) ( ~ ) = b ,  x~>O, r (4.2) 

using the feasible starting point  xo > 0, r = [I b -Axo]l .  (Note  that, even if A is sparse, 
the addit ional  co lumn s in (4.2) will in general be dense.) In our experiments we 

have used Xo = [] b ]1 e. 

When r = 0, a suitable point  has been found.  Since the barrier t ransformat ion 

will not  allow r to reach the desired value of  zero, ~: must be treated differently 



P.E. Gill et al. / Barrier methods for linear programming 193 

from the other variables in solving (4.2) with a barrier algorithm. In our implementa- 

tion, the search direction p and the maximum step aM are computed as if the 
variable ~ were subject to the bound ~:~>-1. I f  the step a causes ~: to become 
negative, an appropriate  shorter step is taken and phase 1 is terminated. The original 
linear program is presumed to be infeasible if the final ~: is positive for a sufficiently 
small value of  p~. 

As an alternative, we note that the convergence of the barrier method appears to 
be moderately insensitive to the choice of  linear objective function. This suggests 
a single-phase algorithm in which an objective function of the form wcVx + ~ is used 
in (4.2), for some positive value of the scalar w. When ~: reaches zero, it is thereafter 
excluded from the problem. If  a single value of o) can be retained at every iteration, 
only a slight change in the definition of the linear program is required after a feasible 
point is found. Some preliminary results with w fixed at 0.1/lie H seem promising; 
see Section 5. In general, a sequence of decreasing values of co may be needed to 
ensure that a feasible point is always obtained if one exists. 

4.3. Solution o f  the least-squares subproblems 

For problems of even moderate size, the time required to perform an iteration 
will be dominated by solution of the least-squares problem (4.1). The widespread 
interest in interior-point methods has arisen because of their reported speed on 
large-scale linear programs. Consequently, problem (4.1) must be solved when A 
is large and sparse. Fortunately, methods for sparse least-squares problems have 
improved dramatically in the past decade. (For a recent survey, see Heath, 1984.) 

An obvious approach to minimizing II r - DAr6rrll is to solve the associated normal 
equations 

AD2A'r  ~ r  = A D r  (4.3) 

using the Cholesky factorization A D 2 A  v= RVR with R upper triangular. Reliable 
software exists for factorizing symmetric definite systems, notably SPARSPAK-A 
(George and Liu, 1981), MA27 (Duff and Reid, 1982, 1983), and YSMP (Eisenstat 
et al., 1982). If  the original linear program (2.1) is primal nondegenerate, the matrix 
A D 2 A  T will be non-singular even at the solution. However, for a degenerate problem, 
A D 2 A  v becomes increasingly ill-conditioned as the solution is approached,  and the 
accuracy of  the computed version of A D 2 A  r correspondingly deteriorates. Further- 

more, any dense columns in A (such as s in phase 1) degrade the sparsity of  R. 
To alleviate these difficulties, we have used a "hybrid" method in which the 

least-squares problems are solved by a conjugate-gradient method (LSQR; Paige 
and Saunders, 1982a, b) with a triangular preconditioner R. Thus, an iterative 
method is applied to solve 

minimize I ] r - ( D a V R - ' ) z l [ ,  (4.4) 

and the correction 6~- is recovered by solving RS~r = z. 
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The preconditioner R comes from the Cholesky factorization of a sparse matrix 
that approximates AD2A v. Thus, 

AD2 A "r~- ,ZiD2 ft a = R T R, (4.5) 

where A and R are obtained as follows. 
1. Before beginning the barrier algorithm, a preliminary row permutation is 

obtained from the symbolic factorization of a matrix ,z~,4 r, where ,4 is A with certain 
columns replaced by zero. For the results of  Section 5, we excluded the artificial 
vector s in (4.2) and any columns of A containing 50 or more nonzeros. Subroutines 
G E N Q M D  and SMBFCT of George and Liu (1981) were used to obtain a minimum- 
degree ordering P and to set up appropriate data structures for the subsequent 
numerical factorizations. 

2. At each iteration of the barrier algorithm, further columns and /or  rows of 
may be replaced by zero: columns for which xj ~< 10 6, and rows that have been 
marked for exclusion during earlier iterations. Subroutine GSFCT of George and 
Liu (1981) is used to obtain the Cholesky factorization 

PAD2ATP v= u r u ,  U upper triangular, 

2<z with the proviso that if a diagonal element of  U satisfies uii ~ 10 -'2, the ith row of 
U is replaced by e~, and the ith row of PA is marked for exclusion in later iterations. 
The preconditioner for (4.4) is defined as R = UP. 

3. After each iteration, any variables satisfying xj ~< 10 -8 are changed to zero for 
the remaining iterations. This (conservative) test is unlikely to remove the "wrong" 
variables from the problem, but it allows some economy in computing R and solving 
the least-squares problems. 

The performance of LSQR is strongly affected by the quality of  the preconditioner, 
and by the specified convergence tolerance ATOL (see Paige and Saunders, 1982a). 
With the present implementation, we have AD2A v = RTR + E~ + E2, where E~ has 

low rank and ITE_,[] is small; the value of ATOL is taken as 10 -~~ In this situation, 
LSQR typically requires only one or two iterations to achieve acceptable accuracy 
in phase 2, and only two or three iterations in phase 1. 

There is scope in future work for degrading the approximation (4.5) to obtain a 
sparser R more quickly, at the expense of further iterations in LSQR. In fact, Gay 
(1985) has reported considerable success in the analogous task of preconditioning 
the symmetric conjugate-gradient method in order to solve the normal equations 
(4.3). We discuss this further in Section 6.1. 

4.4. Determination of  the steplength 

The steplength a in (2.9) is intended to ensure a reduction in the barrier function 
F(x)  in (2.3) at every iteration. Let f ( ~ )  denote F ( x +  c~p), treated as a function of 
a, and let aM be the largest positive feasible step along p. When p = PB, f ' (0)  < 0; 
by construction of a positive singularity at the boundary of the feasible region, 
. / '(aM) = + ~ .  Thus, there must exist a point a*  in the interval (0, c~M) such that 



P.E. Gill et al. / Barrier methods Jot linear programming 195  

f ( a * )  = O. Because of the special form of f, a* is unique and is the univariate 

minimizer o f f ( a )  for a ~ [0, aM]. 

In our algorithm, a is an approximation to a zero of the function f ' ( a ) .  In order 
to obtain a "sufficient decrease" in F (in the sense of Ortega and Rheinboldt, 1970), 

an acceptable a is any member of the set 

r =  ( a - I s  < - -/3f'(0)}, 

where /3 is a number satisfying 0 ~</3 < 1. (The smaller the value of/3, the closer 

the approximation of a to a zero o f f ' . )  

The computation of an acceptable steplength involves an iterative procedure for 

finding a zero o f f ' .  Many efficient algorithms have been developed for finding the 

zero of a general univariate function (see, e.g., Brent, 1973), based on iterative 

approximation by a low-order polynomial. However, such methods tend to perform 
poorly in the presence of singularities. In order to overcome this difficulty, special 

steplength algorithms have been devised for the logarithmic barrier function (e.g., 

Fletcher and McCann, 1969; Murray and Wright, 1976). These special procedures 

are based on approximating f ( a )  by a function with a similar singularity. 
Given an interval I such that a* r I and I" c I, a new interval [ ( i t  I)  is generated 

using as ,  the zero of a simple monotonic function 6 ( a )  that approximates f ' ( a ) .  

Let as  z I be the current best estimate of a*. Define the function 6 ( a )  to be 

6(~)= ~ , + - -  
a M - - a  ~ 

where the coefficients V~ and 72 are chosen such that ~ ( a s ) = . F ( a s )  and ~b'(as)= 

f"(a•). The new estimate of the zero of i f ( a )  is then given by 

a~ = aM + Y2/ Y~. 

Using this prescription, a sequence of intervals {6} is generated such that I0 = 

[0, aM], 6 c lj ~ and F c  I i. (For additional details, see Murray and Wright, 1976.) 

The first point a m that lies in F is taken as a. 

In practice, a close approximation to the minimum of F ( x +  ap)  can be obtained 
after a small number (typically 1-3) of estimates a,~. Since the minimum is usually 

very close to a^4, at least one variable will become very near to its bound if an 

accurate search is performed. Although this may sometimes be beneficial, the danger 

exists--particularly in phase 1--that the optimal value of that variable could be far 
from its bound. Thus, performing an accurate linesearch may temporarily degrade 

the speed of convergence. To guard against this, we use a = 0.9aM in phase 1 (if 

to = 0 in the objective function). Otherwise, we set/3 = 0.999 in the linesearch and 
use 0.9aM as an initial step, which is normally accepted. If  necessary, we compute 

the sequence of estimates a m as described. 

4.5. Choice o f  the barrier parameter 

In a "classical" barrier-function method (e.g., as described in Fiacco and McCor- 

mick, t968), the usual procedure is to choose an initial value of p~, solve the 
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subproblem (2.3), and then decrease/x (say, by multiplying by a constant). In order 
for x*(/x) to converge to x*, it is essential that/~ ~ 0. If  the barrier search direction 
and a steplength as defined in Section 4.4 are used to solve (2.3) with a fixed /x, 
standard proofs for descent methods (see, e.g., Ortega and Rheinboldt, 1970) can 
be applied to guarantee convergence to x*(/x). When (2.1) is primal nondegenerate 
and ~ is "sufficiently small" (say, ~ =/~mm) it follows from (2.4a) that the final 
iterate of  the barrier method will approximate the solution of the linear program 
(2.1) to within the accuracy specified by /Xmin. If  the problem is degenerate, (2.4b) 
implies that the solution will be less accurate. 

Various strategies for changing # can be devised. The main aim is to reduce p, 
as quickly as possible, subject to ensuring steady progress toward the solution. For 
example, only a single step of Newton's method could be performed for each of a 
decreasing sequence of/x-values.  Alternatively, each value of /x  could be retained 
until the new iterate satisfies some convergence criterion for the subproblem. We 
have not experimented with the values /x =/xc  of Theorem 3.1 because of the 
difficulty (and artificiality) of converting general problems to the special form (3.1). 

As indicated in the description of the algorithm, the vector r = DT/- /xe  is used 
to measure convergence for the current subproblem. The size of II r[I is monitored 
in our implementation, and the reduction of p. is controlled by two parameters as 
follows. 

1. An initial "target level" for Ilrl[ is defined to be ~-= I[r0]l * RGFAC. 
2. Whenever Nr[l<~7, the barrier parameter is reduced to /x * MUFAC, r is 

recomputed, and a new target level is defined to be r = 11 rll * RGFAC. 
The parameters RGFAC and MUFAC should lie in the range (0, 1) to be meaningful. 
For example, the values RGFAC = 0.99, MUFAC = 0.25 allow a moderate reduction 
in/x almost every iteration, while RGFAC = MUFAC = 0.001 requests more discern- 
ible progress towards optimality for each subproblem, with a substantial reduction 
in/x on rare occasions. 

4.6. Convergence tests 

Two other parameters,/xo and/xm~,, are used to define the initial and final values 
of the barrier parameter,  and the degree of optimality required for the final subprob- 
lem. In the feasibility phase,/x is initialized to/Xo(1 + ~)/n and progressively reduced 
as described above until E reaches zero. In the optimality phase, /X is reset to 
/xo(1 + IcVxl)/n (except if o)> 0 in the objective function) and again progressively 
reduced. 

Whenever a reduction is about to take place (in Step 3 of  the algorithm), a "final" 
barrier parameter  is defined by 

/xF=/xmln( l+~) /n  or UF=/Xmi,,(I+IcTx])/n, 

depending on the phase. If  the newly reduced/x is less than/XF, the barrier parameter 
and the target level for [Irl] are fixed for the remaining iterations at /X =/x~ and 
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~-= x / ~  tZF r e spec t i ve ly .  T e r m i n a t i o n  then  o c c u r s  in S tep  2 o f  the  a l g o r i t h m  w h e n  

Ilrll<~,. 
In  o u r  e x p e r i m e n t s  we  h a v e  used  p ,0=0.1  and  /~min = 10 -6. I f  /X0 is tOO large,  a 

d a n g e r  exis ts  on  p r o b l e m s  fo r  w h i c h  the  f eas ib le  r e g i o n  A x  = b, x > 0 is u n b o u n d e d ;  

s ince  the  b a r r i e r  f u n c t i o n  is t h e n  u n b o u n d e d  b e l o w ,  the  i tera tes  can  d ive rge  in p h a s e  

1 b e f o r e  the  ar t i f ic ia l  va r i ab l e  ~ r eaches  zero .  

5. Numerical results 

5. I. P e r f o r m a n c e  o f  the barr ier  m e t h o d  on a s t a n d a r d  test  se t  

In this s e c t i o n  we s u m m a r i z e  the  p e r f o r m a n c e  o f  the  ba r r i e r  a l g o r i t h m  d e s c r i b e d  

in S e c t i o n  4 on  p r o b l e m s  f r o m  an LP test  set in use at the Sys tems  O p t i m i z a t i o n  

L a b o r a t o r y .  T h e  first n ine  p r o b l e m s ,  w h i c h  are  ava i l ab l e  t h r o u g h  N e t l i b  ( D o n g a r r a  

a n d  G r o s s e ,  1985), j a re  l i s ted  in o r d e r  o f  the  n u m b e r  o f  rows.  P r o b l e m  S C S D 6  was 

o b t a i n e d  f r o m  H o  a n d  L o u t e  (1981),  and  N Z F R I  is a m o d e l  d e v e l o p e d  by the N e w  

Z e a l a n d  F o r e s t r y  R e s e a r c h  Ins t i tu te  ( G a r c i a ,  1984). 

All  p r o b l e m s  are  in the  f o r m  (2.1). To  o b t a i n  cons t r a in t s  o f  the  f o r m  A x  = b, any 

g e n e r a l  i n e q u a l i t y  cons t r a in t s  a re  c o n v e r t e d  to equa l i t i e s  us ing  s lack  var iab les .  

De ta i l s  o f  the  p r o b l e m s  are  g iven  in T a b l e  1. T h e  va lue  o f  " r o w s "  refers  to the  

n u m b e r  o f  g e n e r a l  cons t r a in t s ,  and  " ' c o l u m n s "  to the  n u m b e r  o f  va r i ab les ,  e x c l u d i n g  

slacks.  T h e  n u m b e r  " s l a c k s "  is de f ined  above .  T h e  c o l u m n  " A "  gives  the  n u m b e r  

o f  n o n z e r o s  in the  p r o b l e m .  This  figure i n c l u d e s  o n e  for  each  s lack bu t  e x c l u d e s  

the  n o n z e r o s  in b and  c. 

T h e  runs  s u m m a r i z e d  in Tab le s  2 -5  were  m a d e  in d o u b l e  p rec i s ion  on an I B M  

3081K ( r e l a t ive  p r e c i s i o n  2 .2 •  10-16). T h e  s o u r c e  c o d e  was c o m p i l e d  wi th  the I B M  

Table 1 

Problem statistics 

Problem Rows Slacks Columns A Ilx*ll II~'*ll 

Afiro 27 19 32 102 9.7 x 102 3.9 x 101 
ADLittle 56 41 97 424 6.1 • 102 6.2 • 103 
Share2b 96 83 79 777 1.8 x 10 -~ 3.8 x 102 
Sharelb 117 28 225 1179 1.3 • 106 7.7 • 101 
Beaconfd 173 33 262 3408 1.6 x 105 1.2 • 102 
Israel 174 174 142 2443 9.1 • 105 5.6 • 102 
BrandY 220 54 249 2202 6.5 x 104 8.7 • 10 l 
E226 223 190 282 2768 9.6 x l0 z 4.1 • 10 l 
BandM 305 0 472 2494 1.5 • 10  3 3.0 • 10 l 
SCSD6 147 0 1350 4316 4.5 • 10 ~ 7.9 x 10 l 
NZFRI 623 40 3521 12840 4.3 • 105 3.4• 105 

For details, send electronic mail to netlib@anl-mcs or to research!netlib saying "'send index from 
lp / data". 
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Fortran 77 compiler VS Fortran, using NOSDUMP,  NOSYM and OPT(3). All times 
given are for a complete run, including model input and solution output. 

Table 2 gives the number  of iterations and CPU-seconds required by the primal 
simplex method, as implemented in the Fortran code MINOS 5.0 (May 1985), which 
maintains sparse LU factors of the basis matrix as described in Gill et al. (1986b). 
The default values of  the parameters were used throughout (see Murtagh and 
Saunders, 1983), except that PARTIAL PRICE 10 was specified for the last two 
problems. Results are also given in the case where the constraints are scaled by an 
iterative procedure that makes the matrix coefficients as close as possible to one 
(Fourer, 1982). 

Table 2 

Results from the primal simplex code MINOS 5,0 

Optimal No scaling With scaling 
objective 

Phase I Total Time Phase 1 Total Time 

Afiro -464.75314 2 6 0.5 2 6 0.5 
ADLittle 225494.96 28 123 1.3 30 98 1.1 
Share2b -415.73224 59 9l 1.3 74 121 1.4 
Sharelb -76589.319 135 296 3.4 144 260 2.8 
Beaconfd 33592.486 8 38 1.9 6 39 1.8 
Israel -896644.82 I09 345 5.0 41 231 3.7 
BrandY 1518.5099 176 292 4.9 216 377 5.9 
E226 -18.751929 109 570 9.4 101 471 7.5 
BandM -158.62802 167 362 7.6 280 534 10.0 
SCSD6 50.500000 172 521 7.0 180 1168 14.4 
NZFRI -27892262. 2166 4131 146.0 942 2371 65.4 

Many experiments were made during development of the barrier code, incorporat- 
ing different choices for the parameters RGFAC and MUFAC (Section 4.5), which 
specify the accuracy of a given subproblem and the rate at which the barrier 
parameter  is reduced. One aim was to find a set of  values that could be used reliably 
on all problems. It was found that R G F A C =  0.l and M U F A C = 0 . 1  gave the most 

consistent results. 
Table 3 summarizes the performance of the barrier method with these values. The 

second and third columns of the table give the number of iterations to obtain a 
feasible point and the total iterations required to satisfy the convergence tests of 
Section 4.6. The fourth column gives the total CPU time (in seconds). The objective 
function values found by MINOS 5.0 were used to judge the accuracy of the final 
objective in the barrier runs. The underlined digits in the fifth column show the 
correct figures in the objective function on termination. The final two columns 
indicate the degree of  feasibility and optimality of  the final point. 

Table 4 gives the results of  applying the barrier algorithm with the same scaling 

procedure as in MINOS 5.0, Note that scaling alters the starting point Ilblle (and 
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T a b l e  3 

Bar r i e r  m e t h o d  

N o  sca l ing ,  R G F A C  = 0.1, M U F A C  = 0.1 
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P r o b l e m  P h a s e  1 To ta l  T ime  Ob jec t i ve  
IIb-Axll 

Ilbll 
liD(c- A%)II 

Ilxll I1~11 

Afiro  4 18 0.4 - 4 6 4 . 7 5 3 1 4  10 -11 

A D L i t t l e  14 35 1.1 225494.96  t 0  -9 

S h a r e 2 b  7 22 1.3 - 4 1 5 . 7 3 2 2 4  10 -8 

S h a r e l b  10 54 3.8 - 7 6 5 8 9 . 3 1 9  10 7 

B e a c o n f d  21 39 9.0 33592.486  10 -8 

Israel  17 49 18.7 - 8 9 6 6 4 4 . 8 2  10 -6 

B r a n d Y  19 39 7.8 1518_5099 10 -7  

E226 19 44 9.0 - 1 8 . 7 5 1 9 2 9  10 - 6  

B a n d M  19 42 9.0 - 1 5 8 . 6 2 8 0 2  10 -6 

S C S D 6  1 20 5.4 50 .500000 10 -8 

N Z F R I  24 54 53.7 - 2 7 8 9 2 2 6 2 .  10 -5 

10-s 
10-8 

10 9 

10-~o 

10-9 

10- ,o  

lO-lO 

10 ,o 

10-~o 

10 -8 

10 ~z 

T a b l e  4 

Bar r i e r  m e t h o d  

Wi th  sca l ing ,  R G F A C  = 0.1, M U F A C  = 0 . 1  

P r o b l e m  Phase  1 Tota l  T ime Objec t ive  
II b-  axl{ 

Ilbll 

II O(c - ATIr)II 
{Ixrl {l'rll 

Afiro  4 18 0.4 - 4 6 4 . 7 5 3 1 4  10 - I t  10 -8 

A D L i t t l e  13 32 1.1 225494.96 10 9 10-9 

S h a r e 2 b  8 23 1.4 - 4 1 5 . 7 3 2 2 4  10 -8 10 -9  

S h a r e l b  7 33 2.6 - 7 6 5 8 9 . 3 1 9  10 -6 10 u 
B e a c o n f d  24 44 9.9 33592.486 10 5 10-10 

l s rae l  10 48 18.6 - 8 9 6 6 4 4 . 8 2  10 -6 10 - j ~  

B r a n d Y  19 42 8.5 1518.5099 10 -7  10 ,1 

E226 18 43 9.0 - 1 8 . 7 5 1 9 2 9  10 -7  10 - l ~  

B a n d M  20 42 9.0 - 1 5 8 . 6 2 8 0 2  10 -6 10 - t ~  

S C S D 6  1 21 5.7 50 .500000 10 8 10-8 

N Z F R I  23 53 53.7 - 2 7 8 9 2 2 6 2 .  10 7 10-J2 

all subsequent iterates), but the results are essentially the same as without scaling. 
In this regard, the barrier algorithm appears to be more robust than the simplex 
method. 

Table 5 illustrates the performance of a single-phase barrier method in which a 
composite objective function of the form w c V x  + ~ was used throughout (see Section 
4.2). The number of phase 1 iterations is sometimes greater than that for w = 0 (cf. 
Table 4), but the total number of iterations is generally less. 

In all cases, the number of iterations required by the barrier algorithm appears 
to be qualitatively similar to that reported for various implementations of the 
projective method (cf. Tomlin, 1985; and Lustig, 1985). 
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Table 5 

Barrier method with composite objective function 

With scaling, RGFAC = 0.1, MUFAC = 0.1, to = 0.1/II cll 

Problem Phase 1 Total Time Objective 
IIb-Axll 

Ilbll 
l i D ( c -  A%)II  

IIxll I1 ~tl 

Afiro 4 19 0.4 -464.75314 I0 -I~ 10 8 
ADLittle 20 26 1.0 225494.96 10 -8 10 4 
Share2b 8 23 1.4 -415.73224 10 8 10-9 
Sharelb 9 35 2.9 -76589.319 10 6 10-it 

Beaconfd 27 29 8.1 33592.486 10 -5 10 1o 
Israel 10 41 15.9 -896644.82 10 6 10-1o 

BrandY 25 28 6.4 1518.5099 10 -3 10 ii 
E226 23 37 8.5 -18.751929 10 6 10-~o 
BandM 26 33 7.9 - 158.62802 10 -6 10 1o 

SCSD6 1 20 5.7 50.500000 10 -8 10 8 
NZFRI 39 41 51.4 -27892262. 10 5 10 12 

Some statistics concerning the matrix factorizations used in MINOS 5.0 and the 
barrier method are provided in Table 6. As in Table 1, column "A" gives the number 
of  nonzeros in the problem. The columns "B" and "L+ U" give the number of  
nonzeros in the simplex basis and its LU factors after the last refactorization, which 
typically produces the most dense factors. Finally, the column "R" contains the 
number of  nonzeros in the Cholesky factorization (4.5) required by the barrier 
method. 

5.2. Per formance  on a degenerate  test set 

T a b l e  7 g i v e s  s t a t i s t i c s  f o r  a g r a d u a t e d  s e t  o f  t h r e e  m o d e l s  f r o m  a s i n g l e  a p p l i c a t i o n .  

T h e  m o d e l s  a r e  n o t a b l e  f o r  t h e i r  s e v e r e  d e g e n e r a c y .  

Table 6 

Factorization statistics 

Problem A B L + U R 

Afiro 102 67 67 80 
ADLittle 424 261 275 355 
Share2b 777 564 597 925 

Sharelb  1179 579 636 1345 

Beaconfd 3408 1546 1546 2727 
Israel 2443 1644 1664 3533 ~ 

BrandY 2202 1318 1485 3251 
E226 2768 1440 1620 3416 

BandM 2494 2016 2372 4355 
SCSD6 4316 536 581 2398 

NZFRI 12840 2290 2400 18029 

11259 if six dense columns are included. 
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Table 7 

Model statistics--degenerate problem set 

Problem Rows Slacks Columns A 

Degenl 66 15 72 296 
Degen2 444 223 534 4894 
Degen3 1503 786 1818 25432 
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These problems were solved using an early version of the barrier algorithm with 
a more relaxed termination criterion (i.e., the final iterate was an "approximate" 
solution of the linear program). Specifically, the barrier algorithm terminated when 
maxi Ix  jl ~< 10-711cll IIxlP, i.e., when complementarity was approximately achieved. 
Problems Degenl and Degen2 were solved on an IBM 3033N, and Degen3 was run 

on an IBM 3081K. 
The primal simplex code used was Ketron's WHIZARD optimizer, which was 

called from MPSIII  in all cases except for Degen3, where the host was MPSX/370. 
The first two columns of Table 8 give the number of simplex iterations required to 
reach optimality, and the CPU time in seconds. 

The next three columns of Table 8 give the results for the barrier algorithm. 
Because WHIZARD is written in assembly language, a factor 3' is included in the 
times for the barrier method to represent the comparison of Fortran to assembly 
language. In many applications, it is accepted that a factor of two in speed (corre- 
sponding to y = ~) can be gained by programming in assembly language (see, e.g., 
Bentley, 1982). However, for inner loop optimization of dense floating-point scalar 
products, the IBM Fortran compiler with the highest level of optimization (used in 
all the runs reported in this paper) produces such efficient code that little scope 
remains for improvement by using assembly language, i.e., 3'~ 1 (Moler, 1985). 
Because of this uncertainty, no absolute conclusions about the speeds of the simplex 
and barrier methods can be drawn from Table 8. 

However, one trend clearly emerges from the final column of Table 8, which 
contains the ratio of the time required by the barrier algorithm to the time required 
by the simplex method. For the degenerate problems, this ratio increases with 
problem size, so that the barrier algorithm becomes relatively less efficient for the 

larger problems. 

Table 8 

Degenerate problem set 

Simplex Barrier Ratio 
Iterations Time Phase 1 Total Time ( B / S )  

Degenl 23 0.7 2 15 0.97 1.287 
Degen2 2650 31.2 13 26 54.93, 1.763, 
Degen3 8889 226.0 11 25 528.07 2.347 
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A reason for this trend is suggested by the statistics in Table 9. The first three 
columns give the number of non-zeros in a typical basis B, the number of non-zeros 
in the LU factorization, and their ratio; the last three columns give the number of 
non-zeros in the original matrix A, the number of non-zeros in the Cholesky factor 
R of AD2A -r, and their ratio. 

Comparing columns 3 and 6, we see that the relative increase in density of the 
LU factorization is approximately constant as problem size increases, while the 
relative density of the Cholesky factor increases with problem size. The resulting 
increased cost of solving the least-squares subproblem in the barrier method provides 
some explanation for the trend noted in Table 8. However, it is obvious that for 
certain structures in A, the relative increase in density of the Cholesky factor will 
remain constant as problem size increases, and that the performance of the barrier 
algorithm will consequently improve relative to the simplex method on such problems 
as size increases. 

An important feature that does not appear in the tables is the substantial time 
needed for the single execution of the symbolic ordering subroutine GENQMD: 
13.4 seconds for Degen2 (24% of the total) and 237 seconds for Degen3 (43%). 
Clearly, a more efficient means of preprocessing must be found for large problems. 
(An improved procedure has recently been given by Liu, 1985.) 

5.3. Early termination of the barrier algorithm 

Because of relations (2.4) and (2..5), a "nearly optimal" solution can be obtained 
by early termination of the barrier algorithm. In contrast, it is well known that early 
termination of the simplex method does not necessarily produce a "good approxima- 
tion" to the optimal solution. (This observation emphasizes the fundamental 
difference in the iterative sequences generated by a combinatorial algorithm like 
the simplex method and a nonlinear algorithm like the barrier method.) 

Table 10 gives the numbers of iterations when the barrier algorithm of Table 4 
was terminated "ear ly"--wi th  two figures, three figures and "optimal" accuracy 
(approximately six correct digits) in the objective function. The results indicate that 
almost one-half the work of the barrier algorithm can be saved by terminating early, 
if an inaccurate solution is acceptable. As many authors have noted, this suggests the 
possibility of using a barrier algorithm to identify the correct active set, and then 
switching to the simplex method (say) to obtain the final solution. 

Table 9 

Factorization s t a t i s t i c s ~ e g e n e r a t e  problem set 

Problem B L +  U (L+ U ) / B  A R R / A  

Degen I 249 251 1.0 296 514 1.7 
Degen2 3076 3718 1.2 4894 16243 3.3 
Degen3 18468 20322 1.1 25432 119373 4.7 
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Table 10 
Early termination of barrier algorithm 
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Problem Two T h r e e  "Optimal" 
digits digits accuracy 

Afiro 10 12 18 
ADLittle 22 24 32 
Share2b 13 15 23 
Sharelb 19 23 33 
Beaconfd 32 37 44 
Israel 29 34 48 
Brandy 27 35 42 
E226 29 34 43 
BandM 31 35 42 
SCSD6 13 15 21 
NZFRI 33 39 53 

5.4. Ob ta in ing  an opt imal  basic solution 

By its very nature, a barrier method can at best terminate somewhere "close" to 
an optimum. We must then ask: how close is "close", and which of the several 

characterizations of LP optimality are we close to achieving? 

In practice, LP users (and their report-writing programs) expect alleged optimal 

solutions to be both primal and dual feasible, thus exhibiting complementary 

slackness. The last columns in Tables 3-5 show that the barrier algorithm can attain 

complementary slackness to high precision. However, LP users also expect their 

solutions to be basic. A basic solution can be achieved by taking the final solution 

from the barrier algorithm and processing it through the BASIC procedure common 

to most mathematical programming systems. 
The BASIC procedure (sometimes known as INSERT-by-value; see Benichou et 

al., 1977) takes a set of variable names and values and produces a basic solution 

that has at least as good an objective value or sum of infeasibilities. The simplex 

method may then be applied to reach optimality. The time required by the BASIC 
procedure and the post-BASIC simplex iterations provides a practical measure of 

closeness to optimality of the barrier solution. 
Some experiments of  this kind were performed on all of the test problems, using 

the near-optimal solutions obtained by the barrier algorithm and treating components 
less than 10 6 as zero. With ~ denoting the basic solution obtained by BASIC, the 

quantities IIb-Axll/Hb[I were less than 10 -5 in all cases, and the values of [cX~ - 

cT x* l / l cTx  .1 were all less than 10 -3. Clearly, the primary effect of the post-BASIC 

simplex iterations is to remove dual infeasibilities. 
The number of post-BASIC simplex iterations appears to be a function of size 

and degeneracy. For the test set in Table 1, only a small number of post-BASIC 

simplex iterations were required to reach optimality: at most 6 for the first nine 

problems, 61 for SCSD6, and 37 for NZFRI. (Note that PRESOLVE was applied 

to NZFRI prior to BASIC; see Section 5.5.) 
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For Degen2 and Degen3, the post-BASIC simplex iterations comprised 11% and 
7% of the simplex iterations required when starting from scratch. Thus, the relative 
number of post-BASIC simplex iterations required for these problems appears to 
decline with problem size, compared to the number required by WHIZARD to solve 
the problems from scratch. The total time required by BASIC and post-BASIC 
simplex iterations was about 25% of the total time required when starting from 
scratch. 

It would be of interest to perform further experiments with BASIC, starting from 
the "early termination" points referred to in Table 10. The results already obtained 
suggest that the combined barrier/BASIC/simplex approach would often be more 
effective than either the barrier or simplex algorithms alone. 

5.5. Null variables 

In practice, linear programs are often structurally degenerate, in the sense that 
certain variables (called null variables) must be zero in any feasible solution. For 
example, the problems BrandY, E226, BandM and NZFRI have 23, 20, 21 and 1477 
null variables respectively, as determined by the PRESOLVE procedure in 
WH IZARD. Ideally, such variables should be removed before a solution procedure 
is called. They can then be restored and dual feasibility attained by the POSTSOLVE 
procedure (see Tomlin and Welch, 1983). 

As an example, when WHIZARD was applied to the problem NZFRI, only 552 
simplex iterations were required to solve the reduced problem--a  substantial 
improvement over the results in Table 2. (The total time, including PRESOLVE and 
POSTSOLVE, was 9.5 seconds on an IBM 3081K.) 

In our experience, failure to remove large numbers of null variables usually results 
in many iterations by the simplex method, but not for our particular implementation 
of the barrier algorithm. This is another area (as with scaling) where the barrier 
approach appears to be more robust than the simplex method. 

6. Future developments and conclusions 

6.1. Solving the least-squares subproblem 

The present implementation, as in Gay (1985), uses a preconditioned conjugate- 
gradient method to solve the relevant least-squares subproblems. This approach 
allows the use of existing software for computing Cholesky factors, and provides a 
convenient way of dealing with a few dense columns of A that would degrade the 
sparsity of those factors. Perhaps further efficiency could be gained by discarding 
small nonzeros in the product AD2A v (not just rows and columns of A) before 
computing its Cholesky factors. However, a new symbolic factorization would then 
be required at every stage, not just once. 



P.E. Gill et al. / Barrier methods for linear programming 205 

Our experiments indicate that the preconditioner must be of  high quality 
throughout in order to retain efficiency in the conjugate-gradient method. An 
iteration of LSQR or the conjugate-gradient method requires two matrix-vector 
products involving A and two solves with the preconditioner R, and is therefore as 
expensive (typically) as two iterations of the simplex method. To see the relevant 
tradeoffs, assume that R could be obtained with minimal effort, but that LSQR 
required an average of 20 iterations to converge; then the barrier method would be 
similar in speed to the simplex method if it terminated in about 4~oth the number of  
iterations. 

The effect on speed of excluding dense columns from the preconditioner can be 
seen in the test problem Israel, which has six dense columns in A. With these 
excluded from the computat ion of R, LSQR required an average of 10 iterations to 
converge, indicating inaccuracy in the preconditioner. On the other hand, retaining 
all columns decreased the number of LSQR iterations, but produced an R with 
three times as many nonzeros, and hence doubled the execution time. 

For reasons such as these, much research is needed concerning the computation 
of good preconditioners for arbitrary sparse matrices DA T, i.e., for arbitrary linear 
programs. (For some suggested approaches based on the LU factorization, see Gill 
et al., 1986a.) There is reason to be optimistic for certain p rob lems- - for  example, 
those exhibiting a block-triangular structure with many small diagonal blocks. 

In place of  the iterative methods just described, one can employ a sparse 
orthogonal factorization of the form 

DAV=Q(R) ,  QTQ=I, R upper  triangular (6.1) 

to solve the least-squares problems directly, where R is analytically the same as the 
Cho[esky factor of  AD2A r. General-purpose software exists for this computation, 

in particular SPARSPAK-B (George and Ng, 1984), which has excellent numerical 
properties and is able to treat dense rows of DA ~ specially in order to preserve the 
sparsity of  R. Its use in this context merits future investigation. 

A further direct approach is to apply a sparse indefinite solver to the symmetric 
system (2.11). The MA27 package of Duff and Reid (1982, 1983) is applicable, and 
as with the sparse QR (6.1), a single symbolic factorization serves all iterations. The 
dense artificial column can be excluded from the factorization and treated by 
partitioning. Unfortunately, on the problems of Table 1, the symbolic factors have 
proved to be twice as dense as R in (4.5), and the severe indefiniteness of  (2.11) 
leads to numerical factors that are 3 to 10 times as dense as R. Hence, our initial 
experience with this approach has been unpromising. 

6.2. Adjusting the barrier parameter 

Numerous authors have suggested extrapolation techniques in connection with 
barrier functions (see, e.g., Fiacco and McCormick, 1968; Fletcher and McCann, 
1969). ( Note that an extrapolation strategy would need to be applied to both phases.) 
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In a small number of our experiments, extrapolation was performed after a 
reasonably accurate minimization of the barrier function for two quite large values 
of t*(llcll/n and 0.1[Icll/n ). The resulting solutions were typically accurate to about 
five figures. However, it is difficult to evaluate the practical merits of this approach 
without further study. 

A number of suggestions have been made for automating the choice of p,. The 
method of centers (see Fiacco and McCormick, 1968; Huard, 1967) is in essence a 
barrier-function method in which a transformation is also applied to the objective 
function. Although an explicit barrier parameter is thereby avoided, another 
parameter must be chosen in order for the procedure to be effective. See Todd 
and Burrell (1985) for further discussion of this approach. 

In our view, the freedom to choose / ,  may well be an asset, especially in solving 
linear programs. This is confirmed by our experience with the conservative strategy 
of allowing/~ to be reduced only occasionally. Considerable progress is then often 
achieved before the least-squares problems become unduly ill-conditioned. 

6.3. Use of the entropy function 

Because of the similarities, we note the work of many authors on incorporating 
the entropy function into linear programming models. In place of subproblem (2.3), 
one can consider the subproblem 

minimize cTx + I~ ~ Xj In xj 
x r Ir~" j -  I 

subject to Ax = b, 

where the scalar / ,  (/~ > 0) is again specified for each subproblem. Erlander (1977) 
reviews problems of this kind and suggests Newton-type methods for their solution. 
Computational algorithms have been developed by Eriksson (1980, 1981, 1985). 

If a feasible-point descent method is applied as in Section 2, the Newton search 
direction and Lagrange-multiplier estimates satisfy the system 

in place of (2.12), where D = diag(xj) and v has components t~ = 1 +In xj. A least- 
squares subproblem follows as before. In the algorithm of Section 4.1, r becomes 
D1/2(TI + txv) in steps 1, 3 and 5, D becomes D ~/2 in the least-squares problem (4.1), 
and p = - (1 / tx )D~/2 r  in step 5. 

The entropy function is convex and (unlike the logarithmic barrier function) 
bounded below. Since its Hessian is ~ D  -~ rather than /xD 2, the least-squares 
problems are better conditioned as the LP solution is approached. Further computa- 
tional work therefore seems to be justified, either as in Eriksson (1980, 1981, 1985) 
or along the lines suggested here. 

6.4. Conclusions 

Our experience with the barrier method suggests several conclusions. On the 
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positive side: 

�9 A significant body of computational evidence indicates that for general non- 
trivial linear programs, a general harrier method can be comparable in speed to the 
simplex method; 

�9 In some cases the barrier method will be faster than the simplex method (even 
substantially so), and its advantage will increase on problems in which the least- 
squares subproblems can be solved rapidly. Furthermore, since we deliberately used 
the same parameters on all test problems, there is much scope for "tuning" the 
algorithm on particular problem classes; 

�9 The mathematical and qualitative relationship between the projective and 
barrier methods places this approach to linear programming in a well understood 
context of  nonlinear programming, and provides an armory of known theoretical 
and practical techniques useful in convergence analysis and implementation. 

On the negative side: 
�9 The barrier method has not been consistently faster than the simplex method 

on general unstructured problems, and has been considerably slower on certain 
examples. Furthermore, its efficiency relative to the simplex method may decrease 
with size on problems for which the density of  the Cholesky factor increases more 
rapidly than that of the L U  factorization; 

�9 "Nonlinearizing" a linear problem makes the development of  a robust general- 
purpose algorithm more difficult. For example, extreme nonlinearity near the boun- 
dary of the feasible region can lead to poor  performance if variables migrate 
prematurely toward their bounds, or if a "good"  starting point is available from an 
earlier run on a similar problem. Furthermore, nonlinear algorithms typically display 
wide variations in performance, depending on the selection of various parameters. 

Finally, we make the following general observations: 
�9 Most qualitative aspects of Karmarkar's projective method can be found in the 

projected Newton barrier method; 
�9 No attempt has been made to date to obtain a proof of polynomial complexity 

for any version of the barrier algorithm; 
�9 The efficiency of the projective and barrier methods depends critically on fast, 

stable techniques for solving large-scale least-squares problems. Modern sparse- 
matrix technology is absolutely crucial in any further development of these methods 
for large-scale linear programming; 

�9 There is much promise for interior-point approaches to linear programming, 
particularly for specially-structured problems. 
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