ALGORITHM 245

TREESORT 3 [M1]

RoserT W. I'LOYD (Recd. 22 June 1964 and 17 Aug. 1964)
Computer Associates, Inc., Wakefield, Mass.

procedure TREESORT 3 (M, n);
value n; array M; integer n;
comment TREESORT 3 is a major revision of TREESORT
[R. W. Floyd, Alg. 113, Comm. ACM § (Aug. 1962), 434] sug-
gested by HEAPSORT [J. W. J. Williams, Alg. 232, Comm.
ACM 7 (June 1964), 347] from which it differs in being an in-place
sort. It is shorter and probably faster, requiring fewer compari-
sons and only one division. It sorts the array M[1:a], requiring
no more than 2 X (27p—2) X (p—1), or approximately 2 X
n X (loga(n)—1) comparisons and half as many exchanges in
the worst case to sort n = 27p — 1 items. The algorithm is
most easily followed if M is thought of as a tree, with M{j+2]
the father of M[j] for 1 < j = n;
begin
procedure exchange (z,y); real z,y;
beginreal {; {:=2z; 2 :=y; y:=1t
end exchange;
procedure siftup (i,n); value ¢, n; integer ¢, n;
comment M[7] is moved upward in the subtree of M[1:n] of
which it is the root;
begin real copy; integer j;
copy = MI[:];
loop: j := 2 X 4
if j £ n then
begin if j < n then
begin if M[j+1] > M{j] then j := 7 4+ 1 end;
if Mij] > copy then
begin M[:] := M[j]; 7 :=j; go to loop end
end;
M[i} := copy
end siftup;
integer 7;
for ¢ := n-+2 step —1 until 2 do siftup (i,n);
for 7 := n step —1 until 2 do
begin siftup (1,2);
comment M[j+2] = M(jlforl <j £ 1;
exchange (M[1], M[z]);
comment M[i:mn] is fully sorted;
end
end TREESORT 3

ALGORITHM 246

GRAYCODE [Z]

J. Booraroyp* (Reed. 18 Nov. 1963)

English FKlectric-Leo Computers, Kidsgrove, Stoke-on-
Trent, England
* Now at University of Tasmania, Hobart, Tasmania, Aust.

procedure graycode (a) dimension: (n) parity: (s);
Boolean array a; integer n; Boolean s;

comment elements of the Boolean array a[l:n] may together be

value n,s;

Volume 7 / Number 12 / December, 1964

e e U
SR
At

%

ks
A e

e .
: 'N» ¥ ,’?.?..«. 1P LS g

G. E. FORSYTHE, J. G. HER

ﬁIOT, Editors

considered as representing a logical vector value in the Gray
cyclic binary-code. [See e.g. Phister, M., Jr., Logical Design of
Digital Computers, Wiley, New York, 1958. pp. 232, 399.] This
procedure changes one element of the array to form the next
code value in ascending sequence if the parity parameter s
= true or in descending sequence if s = false. The procedure
may also be applied to the classic “rings-o-seven’ puzzle [see
K. E. Iverson, A Programming Language, p. 63, Ex. 1.5];
begin integer ¢,j; j:=n + 1;

for 7 := n step —1 until 1 do if ¢[¢] then begin s := — s;
j =1 end;

if s then a[l] := — a[l] elseif j < n then a[j+1] := - alj+1]
else a[n] := — a[n]

end graycode

ALGORITHM 247

RADICAL-INVERSE QUASI-RANDOM POINT

SEQUENCE [G5]

J. H. Havron axp G. B. Smrra (Reed. 24 Jan. 1964 and
21 July 1964)

Brookhaven National Laboratory, Upton, N. Y., and
University of Colorado, Boulder, Colo.

procedure QRPSH (K, N, P,Q, R, E);
integer K, N; real array P, Q; integer array R; real E;
comment This procedure computes a sequence of N quasi-
random points lying in the K-dimensional unit hypercube
given by 0 < x; <1, 7 =1,2, -+, K. The ith component of
the mth point is stored in Q[m,7]. The sequence is initiated by a
“zero-th point’’ stored in P, and each component sequence is
iteratively generated with parameter R[¢]. E is a positive error-
parameter. K, N, E, and the P[¢] and R[z] for7 =1,2, --- | K,
are to be given.
The sequence is discussed by J. H. Halton in Num. Math. 2
(1960), 84-90. If any integer n is written in radix-R notation as

nening . 0 = ny + kR + anz =+ .. + nmRm;

N = Ny ***

and reflected in the radical point, we obtain the R-inverse func-
tion of n, lying between 0 and 1,

N = N1 4 n B2
4 neR 4 -+ + na Rl

The problem solved by this algorithm is that of giving a com-
pact procedure for the addition of B, in any radix R, to a frac-
tion, with downward ‘‘carry’”.

If Pi] = ¢ruj(s), as will almost always be the case in practice,
with s a known integer, then @[m,.] = ¢zu(s+m). For quasi-
randomness (uniform limiting density), the integers R[] must
be mutually prime.

For exact numbers, E would be infinitesimal positive. In prac-
tice, round-off errors would then cause the “‘carry” to be in-
correctly placed, in two circumstances. Suppose that the stored
number representing ¢r(n) is actually ¢r(n) + A. (a) If |A |
= R™™1 we see that the results of the algorithm become un-

dpr(n) =0 . ngnnse -+

Communications of the ACM 701

