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Lecture 5: Duality and KKT Conditions

e Lagrange dual function

e Lagrange dual problem

e strong duality and Slater’'s condition
e KKT optimality conditions

® sensitivity analysis

e generalized inequalities
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Lagrangian

standard form problem, (for now) we don’t assume convexity
minimize  fo(x)

subject to  fi(x) <0, i=1,...

e optimal value p*, domain D

e called primal problem (in context of duality)

Lagrangian L : R"™"™ — R

L(CU, A, V) — fO(w) + Z A%fz(x) + Z V’éhi(x)

e )\, > 0 and v; called Lagrange multipliers or dual variables

® objective is augmented with weighted sum of constraint functions
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Lagrange dual function

(Lagrange) dual function g : R — RU {—o0}
m p
g(A\,v) =inf L(x, \,v) = inf <f0(ac) -+ Z Nifi(x) + Z I/ihi(az)>
i=1 i=1

e minimum of augmented cost as function of weights
® can be —oo for some A\ and v
e g is concave (even if f; not convex!)

example: LP
minimize ¢’z
subject to a?w—bigO,izl,...,m

Note that L(z, A) = ¢’ z+ » Ni(a; x—b;) = =b' A+ (A" A+c)'w

=1
—bI'N fAT A+ c=0
hence g(A) = { — 00 otherwise
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Lower bound property

if « is primal feasible, then

g()‘a V) S fO(aj)
proof: if f;(x) < 0and \; > 0,

fo(x) > fo(m)-l—z Aifi(m)-l—z vihi(x) > irzlf (fo(z) + Z Nifi(z) + Z V’éh’é(z)) =g\, v)

fo(x) — g(A, v) is called the duality gap
minimize over primal feasible x to get, for any A > 0 and v,
g(Xv) <p’
A € R™ and v € RP are dual feasible if A > 0 and g(\,v) > —oc

dual feasible points yield lower bounds on optimal value!
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Lagrange dual problem

let's find best lower bound on p™:

maximize  g(\, v)
subjectto A >~ 0

e called (Lagrange) dual problem
(associated with primal problem)

e always a convex problem, even if primal isn't!
e optimal value denoted d*
e we always have d* < p* (called weak duality)

e p* — d* is optimal duality gap
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Strong duality

for convex problems, we (usually) have strong duality:

d* :p*

when strong duality holds, dual optimal A\* serves as certificate of optimality for primal
optimal point x*

many conditions or constraint qualifications guarantee strong duality for convex problems

Slater’s condition: if primal problem is strictly feasible (and convex), i.e., there exists
x € relint D with

fi(x) <0,i=1,...,m
hz(CU):O, izl,...,p

then we have p* = d*
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Dual of linear program

(primal) LP

minimize el

subjectto Ax <b

e n variables, m inequality constraints

dual of LP is (after making implicit equality constraints explicit)

maximize —bl A
subject to ATA4+c¢=0
A>~0

e dual of LP is also an LP (indeed, in std LP format)

e m variables, n equality constraints, m nonnegativity contraints

for LP we have strong duality except in one (pathological) case: primal and dual both
infeasible (p* = 400, d* = —00)
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Dual of quadratic program

(primal) QP

minimize  z’ Pz

subject to Ax < b
we assume P > O for simplicity Lagrangian is L(z,\) = z' Pz + A (Az — b)
VoL(z,\) = 0yields z = —(1/2)P "t A" X, hence dual function is

g(A) = —(1/DHXTAPTTATA — bT A

e concave quadratic function
e all A > O are dual feasible

dual of QP is
maximize —(1/XNAPTATX — b A
subjectto A >~ 0

.. . another QP
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Equality constrained least-squares

minimize xlx

subjectto Ax = b
A is fat, full rank (solution is * = AT(AAT)"1b)
dual function is

1
g(v) = inf (xTa: + v (Az — b)) = —ZI/TAATI/ — by

dual problem is
maximize —%VTAATI/ — by

solution: v* = —2(AA")™'b

can check d* = p*
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Introducing equality constraints

idea: simple transformation of primal problem can lead to very different dual
example: unconstrained geometric programming

primal problem:

m
minimize log Z eXp(a,,éT:E — b))
i=1
dual function is constant g = p* (we have strong duality, but it's useless)

now rewrite primal problem as

minimize 1ogZeXp Yi

subject to y = ACE —b

10
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let us introduce

® m new variables y1, ..., ym
e m new equality constraints y = Ax — b

dual function

g(v) = inf <log Z exp y; + I/T(Ax —b— y)>
m,y

i=1
e infimumis —oo if ATv #£ 0
e assuming A'v = 0, let's minimize over y:

eYi

Z;rbzl e’

solvable iff v; > O, 17y =1

g(v) = — Z vilogy; — bl v

11
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e same expression if v > 0, 17v =1 (0log 0 = 0)

dual problem
maximize —b' v — Z v; log v;

subject to 17v =1, (v > 0)
Atv =0

moral: trivial reformulation can yield different dual

12
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Duality in algorithms

many algorithms produce at iteration k

e a primal feasible zF)

e a dual feasible A*) and (¥
with fo(z®) — g(A®, b)) — 0as k — oo

hence at iteration k we know p* € [g()\(k), vy, fo(a:(k))]

e useful for stopping criteria

e algorithms that use dual solution are often more efficient (e.g., LP)

13
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Nonheuristic stopping criteria

absolute error = fo(z®) — p* < e

stopping criterion: until (fo(a:(k)) — g(A® Ry < e)

fo(z®)) — p*
|p*|

relative error =

stopping criterion:

; (k) o, (k) fo@®)—g(r (), (R (k) PR O OON
until (g(A V) >0 & OMG] <e) or| fo(xz'") <0 & ) < e

achieve target value ¢ or, prove £ is unachievable
(i.e., determine either p* < £ or p* > £)

stopping criterion: until (fo(ac(k)) < 2Lor g AP Ry > E)

14
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Complementary slackness

suppose x*, A*, and v* are primal, dual feasible with zero duality gap (hence, they are
primal, dual optimal)

fo(z*) = g(N*,v*) = inf (fo(w) + > Alfi(z) + ) v:hz(x)) < fo(z")+D Al filz")
i=1 i=1 i=1
hence we have >" A% fi(x*) = 0, and so
AN fi(x") =0, 1=1,...,m

e called complementary slackness condition
e ith constraint inactive at optimum — \; = 0

e )\’ > 0 at optimum = ith constraint active at optimum

15
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KKT optimality conditions

suppose

e f; are differentiable

e x*, \* are (primal, dual) optimal, with zero duality gap

by complementary slackness we have
fola*) + 3° A fila®) = in (fo(:v) 3N fila) + Y foz-(fv)>

i.e., ** minimizes L(x, A\*, V™)

therefore

Vo) + D N Vfi(z") + > v/ Vhi(z") =0

16
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so if £, A*, and v* are (primal, dual) optimal, with zero duality gap, they satisfy

fi(z™) <0

hi(x*) =0

A >0

Aifi(z™) =0

Vfo(z™) + 22, NV filz™) + 32, v/ Vhi(z™) =0

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, if the problem is convex and x*, \* satisfy KKT, then they are (primal, dual)
optimal

17
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Geometric interpretation of duality

consider set
A={(u,t) €R" | 3z fi(x) < wi, folz) <t}

e A is convex if f; are

e T[] ea)

t

t+ ATy = g(A)
g(N) {

o>
[

18
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(Idea of) proof of Slater’s theorem

problem convex, strictly feasible =— strong duality
t

p*/ A

m 1
—_
IS

e (0,p") € A = 3 supporting hyperplane at (0, p*):
(u,t) € A= po(t —p") +p u>0
® po >0, =0, (ko) #0
strong duality < 3 supporting hyperplane with po > 0: for \* = /o, we have
p* <t+Xu V(t,u) €A pt < g\

e Slater's condition: there exists (u,t) € A with u < 0; implies that all supporting
hyperplanes at (0, p*) are non-vertical (po > 0)

19
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Sensitivity analysis via duality

define p*(u) as the optimal value of

minimize fo(x), subjectto fi(x) <wu;, i=1,...,m

epip®

=
x
o9

p*(o) _ )\*TU 1

u

A\* gives lower bound on p*(u): p*(u) > p* — >0, Alu,

1

o if \7 large: u; < O greatly increases p*
e if A7 small: u; > 0 does not decrease p* too much

~ 9p™(0)
8ui

if p*(w) is differentiable, A} = , A, is sensitivity of p* w.r.t. ith constraint

20
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Generalized inequalities

minimize  fo(x)

subject to  fi(z) <k; 0, i=1,...

o =<k, are generalized inequalities on R™

e f;:R" — R" are K;-convex
Lagrangian L : R" x R™1 x ... x R™L — R,

L(z, A1, ..., AL) = fo(z) + ] fi(z) +

dual function
gA1, ., AL) = inf (fo(w) + A fi(z) +

A; dual feasible if A\; >+ 0, g(A1,...,AL) > —o0

N fue)

)
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lower bound property: if x primal feasible and
(A1, ..., AL) is dual feasible, then

g(A1, ..., AL) < fo(x)

(hence, g(A1, ..., Az) < p¥)
dual problem
maximize  g(A1, ..., AL)
subjectto A\ =+ 0, 2=1,...,L

weak duality: d* < p* always
strong duality: d* = p* usually
Slater condition: if primal is strictly feasible, i.e.,
Jr € relint D :  fi(x) <k, 0, ¢ =1,...,L

then d* = p~*
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Example: semidefinite programming

minimize el

subjectto Fy+x1Fi+ -+ x,F,, X0
Lagrangian (multiplier Z > 0)

Lz, Z2)=c' o+ Tr Z(Fo + z1F1 + - - - + z, F},)

dual function

g(Z) = inf (cT:c +Tr Z(Fo+ 1 F1 + -+ - + ann)>
L rI‘I‘FoZ IfTI‘FZZ—I—Cz:O, i:1,...,n
B — 00 otherwise

dual problem
maximize Tr FyZ

subjectto Tr F;Z +¢; =0, 1 =1,...,n
Z=z'>0
strong duality holds if there exists « with Fy + 1 F1 + -- - + 2, F,, <0
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