Lecture 5: Duality and KKT Conditions

- Lagrange dual function
- Lagrange dual problem
- strong duality and Slater's condition
- KKT optimality conditions
- sensitivity analysis
- generalized inequalities

Lagrangian

standard form problem, (for now) we **don't** assume convexity

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

- optimal value p^* , domain D
- called **primal problem** (in context of duality)

Lagrangian $L : \mathbf{R}^{n+m} \to \mathbf{R}$

$$L(x,\lambda,
u)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p
u_ih_i(x)$$

- $\lambda_i \geq 0$ and ν_i called Lagrange multipliers or dual variables
- objective is *augmented* with weighted sum of constraint functions

Lagrange dual function

(Lagrange) dual function $g: \mathbf{R}^m \to \mathbf{R} \cup \{-\infty\}$

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- minimum of augmented cost as function of weights
- can be $-\infty$ for some λ and u
- g is concave (even if f_i not convex!)

example: LP

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & a_i^T x - b_i \leq 0, \ i = 1, \ldots, m \end{array} \\ \mbox{Note that } L(x, \lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i) = -b^T \lambda + (A^T \lambda + c)^T x \\ \mbox{hence } g(\lambda) = \left\{ \begin{array}{ll} -b^T \lambda & \mbox{if } A^T \lambda + c = 0 \\ -\infty & \mbox{otherwise} \end{array} \right. \end{array}$$

Lower bound property

if x is primal feasible, then

$$g(\lambda, \nu) \le f_0(x)$$

proof: if $f_i(x) \leq 0$ and $\lambda_i \geq 0$,

$$f_0(x) \ge f_0(x) + \sum_i \lambda_i f_i(x) + \sum_i \nu_i h_i(x) \ge \inf_z \left(f_0(z) + \sum_i \lambda_i f_i(z) + \sum_i \nu_i h_i(z) \right) = g(\lambda, \nu)$$

 $f_0(x) - g(\lambda,
u)$ is called the **duality gap**

minimize over primal feasible x to get, for any $\lambda \succeq 0$ and ν ,

$$g(\lambda,\nu) \le p^\star$$

 $\lambda \in \mathbf{R}^m$ and $\nu \in \mathbf{R}^p$ are **dual feasible** if $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$

dual feasible points yield lower bounds on optimal value!

Lagrange dual problem

let's find **best** lower bound on p^* :

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- called (Lagrange) dual problem (associated with primal problem)
- always a convex problem, even if primal isn't!
- optimal value denoted d^{\star}
- we always have $d^{\star} \leq p^{\star}$ (called *weak duality*)
- $p^{\star} d^{\star}$ is optimal duality gap

Strong duality

for convex problems, we (usually) have strong duality:

$$\boldsymbol{d}^{\star} = \boldsymbol{p}^{\star}$$

when strong duality holds, dual optimal λ^* serves as **certificate of optimality** for primal optimal point x^*

many conditions or *constraint qualifications* guarantee strong duality for convex problems

Slater's condition: if primal problem is strictly feasible (and convex), *i.e.*, there exists $x \in \operatorname{relint} D$ with

$$f_i(x) < 0, \ i = 1, \dots, m$$

 $h_i(x) = 0, \ i = 1, \dots, p$

then we have $p^{\star}=d^{\star}$

Dual of linear program

(primal) LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$

• n variables, m inequality constraints

dual of LP is (after making implicit equality constraints explicit)

 $\begin{array}{ll} \text{maximize} & -b^T\lambda\\ \text{subject to} & A^T\lambda + c = 0\\ & \lambda \succeq 0 \end{array}$

- dual of LP is also an LP (indeed, in std LP format)
- m variables, n equality constraints, m nonnegativity contraints

for LP we have strong duality except in one (pathological) case: primal and dual both infeasible $(p^* = +\infty, d^* = -\infty)$

7

Dual of quadratic program

(primal) QP

 $\begin{array}{ll} \text{minimize} & x^T P x\\ \text{subject to} & Ax \leq b \end{array}$ we assume $P \succ 0$ for simplicity Lagrangian is $L(x,\lambda) = x^T P x + \lambda^T (Ax - b)$ $\nabla_x L(x,\lambda) = 0$ yields $x = -(1/2)P^{-1}A^T\lambda$, hence dual function is

$$g(\lambda) = -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

- concave quadratic function
- all $\lambda \succeq 0$ are dual feasible

dual of QP is

maximize
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

subject to $\lambda \succeq 0$

. . . another QP

Equality constrained least-squares

 $\begin{array}{ll} \mbox{minimize} & x^T x\\ \mbox{subject to} & Ax = b\\ A \mbox{ is fat, full rank (solution is } x^\star = A^T (AA^T)^{-1}b) \end{array}$

dual function is

$$g(\nu) = \inf_{x} \left(x^T x + \nu^T (Ax - b) \right) = -\frac{1}{4} \nu^T A A^T \nu - b^T \nu$$

dual problem is

maximize
$$-\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

solution: $\nu^{\star} = -2(AA^T)^{-1}b$

can check $d^{\star} = p^{\star}$

Introducing equality constraints

idea: simple transformation of primal problem can lead to very different dual

example: unconstrained geometric programming

primal problem:

minimize
$$\log \sum_{i=1}^m \exp(a_i^T x - b_i)$$

dual function is constant $g = p^{\star}$ (we have strong duality, but it's useless)

now rewrite primal problem as

minimize
$$\log \sum_{i=1}^{m} \exp y_i$$

subject to $y = Ax - b$

let us introduce

- m new variables y_1, \ldots, y_m
- m new equality constraints y = Ax b

dual function

$$g(
u) = \inf_{x,y} \left(\log \sum_{i=1}^{m} \exp y_i + \nu^T (Ax - b - y) \right)$$

• infimum is
$$-\infty$$
 if $A^T \nu \neq 0$

• assuming $A^T \nu = 0$, let's minimize over y:

$$\frac{e^{y_i}}{\sum_{j=1}^m e^{y_j}} = \nu_i$$

solvable iff $u_i > 0$, $\mathbf{1}^T \nu = 1$

$$g(
u) = -\sum_i
u_i \log
u_i - b^T
u$$

• same expression if
$$\nu \succeq 0$$
, $\mathbf{1}^T \nu = 1 \ (0 \log 0 = 0)$

dual problem

maximize
$$-b^T \nu - \sum_i \nu_i \log \nu_i$$

subject to $\mathbf{1}^T \nu = 1, \quad (\nu \succeq 0)$
 $A^T \nu = 0$

moral: trivial reformulation can yield different dual

Duality in algorithms

many algorithms produce at iteration \boldsymbol{k}

- a primal feasible $x^{(k)}$
- ullet a dual feasible $\lambda^{(k)}$ and $\nu^{(k)}$

with $f_0(x^{(k)}) - g(\lambda^{(k)},
u^{(k)}) o 0$ as $k o \infty$

hence at iteration k we know $p^{\star} \in \left[g(\lambda^{(k)},\nu^{(k)}),f_0(x^{(k)})\right]$

- useful for stopping criteria
- algorithms that use dual solution are often more efficient (*e.g.*, LP)

Nonheuristic stopping criteria

absolute error = $f_0(x^{(k)}) - p^* \le \epsilon$

stopping criterion: until $\left(f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)}) \le \epsilon\right)$

relative error
$$=rac{f_0(x^{(k)})-p^{\star}}{|p^{\star}|}\leq \epsilon$$

stopping criterion:

$$\mathsf{until}\left(g(\lambda^{(k)},\nu^{(k)}) > 0 \ \& \ \frac{f_0(x^{(k)}) - g(\lambda^{(k)},\nu^{(k)})}{g(\lambda^{(k)},\nu^{(k)})} \le \epsilon\right) \ \mathsf{or}\left(f_0(x^{(k)}) < 0 \ \& \ \frac{f_0(x^{(k)}) - g(\lambda^{(k)},\nu^{(k)})}{-f_0(x^{(k)})} \le \epsilon\right)$$

achieve **target value** ℓ or, prove ℓ is unachievable (*i.e.*, determine either $p^* \leq \ell$ or $p^* > \ell$)

stopping criterion: until $\left(f_0(x^{(k)}) \leq \ell \text{ or } g(\lambda^{(k)}, \nu^{(k)}) > \ell\right)$

Complementary slackness

suppose x^* , λ^* , and ν^* are primal, dual feasible with zero duality gap (hence, they are primal, dual optimal)

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right) \le f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$$

hence we have $\sum_{i=1}^m \lambda_i^\star f_i(x^\star) = 0$, and so

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m$$

- called **complementary slackness** condition
- *i*th constraint inactive at optimum $\implies \lambda_i = 0$
- $\lambda_i^{\star} > 0$ at optimum $\Longrightarrow i$ th constraint active at optimum

KKT optimality conditions

suppose

- f_i are differentiable
- x^{\star} , λ^{\star} are (primal, dual) optimal, with zero duality gap

by complementary slackness we have

$$f_0(x^*) + \sum_i \lambda_i^* f_i(x^*) = \inf_x \left(f_0(x) + \sum_i \lambda_i^* f_i(x) + \sum_i \nu_i^* f_i(x) \right)$$

i.e., x^\star minimizes $L(x,\lambda^\star,\nu^\star)$

therefore

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0$$

so if x^* , λ^* , and ν^* are (primal, dual) optimal, with zero duality gap, they satisfy

$$\begin{aligned} f_i(x^*) &\leq 0\\ h_i(x^*) &= 0\\ \lambda_i^* &\geq 0\\ \lambda_i^* f_i(x^*) &= 0\\ \nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) &= 0 \end{aligned}$$

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, if the problem is convex and x^* , λ^* satisfy KKT, then they are (primal, dual) optimal

Geometric interpretation of duality

consider set

$$\mathcal{A} = \{ (u, t) \in \mathbf{R}^{m+1} \mid \exists x \ f_i(x) \le u_i, \ f_0(x) \le t \}$$

- \mathcal{A} is convex if f_i are
- for $\lambda \succeq 0$, $g(\lambda) = \inf \left\{ \begin{bmatrix} \lambda \\ 1 \end{bmatrix}^T \begin{bmatrix} u \\ t \end{bmatrix} \middle| \begin{bmatrix} u \\ t \end{bmatrix} \in \mathcal{A} \right\}$ $t + \lambda^T u = g(\lambda)$ $g(\lambda)$

(Idea of) proof of Slater's theorem

u

- $(0, p^*) \in \partial \mathcal{A} \Rightarrow \exists$ supporting hyperplane at $(0, p^*)$: $(u, t) \in \mathcal{A} \Longrightarrow \mu_0(t - p^*) + \mu^T u \ge 0$
- $\mu_0 \geq 0$, $\mu \succeq 0$, $(\mu, \mu_0) \neq 0$
- strong duality $\Leftrightarrow \exists$ supporting hyperplane with $\mu_0 > 0$: for $\lambda^* = \mu/\mu_0$, we have $p^* \leq t + {\lambda^*}^T u \ \forall (t, u) \in \mathcal{A}, \ p^* \leq g(\lambda^*)$
- Slater's condition: there exists $(u, t) \in \mathcal{A}$ with $u \prec 0$; implies that all supporting hyperplanes at $(0, p^*)$ are non-vertical $(\mu_0 > 0)$

Sensitivity analysis via duality

define $p^{\star}(u)$ as the optimal value of

minimize $f_0(x)$, subject to $f_i(x) \leq u_i$, $i = 1, \ldots, m$

 λ^{\star} gives lower bound on $p^{\star}(u)$: $p^{\star}(u) \geq p^{\star} - \sum_{i=1}^{m} \lambda_i^{\star} u_i$

- if λ_i^\star large: $u_i < 0$ greatly increases p^\star
- if λ_i^{\star} small: $u_i > 0$ does not decrease p^{\star} too much

if $p^{\star}(u)$ is differentiable, $\lambda_i^{\star} = -\frac{\partial p^{\star}(0)}{\partial u_i}$, λ_i^{\star} is sensitivity of p^{\star} w.r.t. *i*th constraint

Generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0, i = 1, \dots, L$

- \leq_{K_i} are generalized inequalities on \mathbf{R}^{m_i}
- $f_i : \mathbf{R}^n \to \mathbf{R}^{m_i}$ are K_i -convex

Lagrangian $L : \mathbb{R}^n \times \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_L} \to \mathbb{R}$,

$$L(x,\lambda_1,\ldots,\lambda_L)=f_0(x)+\lambda_1^Tf_1(x)+\cdots+\lambda_L^Tf_L(x)$$

dual function

$$g(\lambda_1,\ldots,\lambda_L) = \inf_x \left(f_0(x) + \lambda_1^T f_1(x) + \cdots + \lambda_L^T f_L(x)
ight)$$

 λ_i dual feasible if $\lambda_i \succeq_{K_i^{\star}} 0$, $g(\lambda_1, \ldots, \lambda_L) > -\infty$

lower bound property: if x primal feasible and $(\lambda_1, \ldots, \lambda_L)$ is dual feasible, then

$$g(\lambda_1,\ldots,\lambda_L)\leq f_0(x)$$

(hence, $g(\lambda_1,\ldots,\lambda_L) \leq p^{\star}$)

dual problem

maximize
$$g(\lambda_1, \ldots, \lambda_L)$$

subject to $\lambda_i \succeq_{K_i^{\star}} 0, i = 1, \ldots, L$

weak duality: $d^{\star} \leq p^{\star}$ always

strong duality: $d^{\star} = p^{\star}$ usually

Slater condition: if primal is strictly feasible, *i.e.*,

 $\exists x \in \operatorname{\mathbf{relint}} D : f_i(x) \prec_{K_i} 0, \ i = 1, \dots, L$

then $d^{\star} = p^{\star}$

Example: semidefinite programming

minimize
$$c^T x$$

subject to $F_0 + x_1 F_1 + \cdots + x_n F_n \preceq 0$
Lagrangian (multiplier $Z \succeq 0$)

$$L(x,Z) = c^T x + \operatorname{Tr} Z(F_0 + x_1 F_1 + \dots + x_n F_n)$$

dual function

$$g(Z) = \inf_{x} \left(c^{T}x + \operatorname{Tr} Z(F_{0} + x_{1}F_{1} + \dots + x_{n}F_{n}) \right)$$
$$= \begin{cases} \operatorname{Tr} F_{0}Z & \text{if } \operatorname{Tr} F_{i}Z + c_{i} = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize
$$\operatorname{Tr} F_0 Z$$

subject to $\operatorname{Tr} F_i Z + c_i = 0, \quad i = 1, \dots, n$
 $Z = Z^T \succeq 0$

strong duality holds if there exists x with $F_0 + x_1F_1 + \cdots + x_nF_n \prec 0$