Lecture 5: Duality and KKT Conditions

- Lagrange dual function
- Lagrange dual problem
- strong duality and Slater's condition
- KKT optimality conditions
- sensitivity analysis
- generalized inequalities

Lagrangian

standard form problem, (for now) we **don't** assume convexity

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- optimal value p^* , domain D
- called primal problem (in context of duality)

Lagrangian $L: \mathbf{R}^{n+m} \to \mathbf{R}$

$$
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)
$$

- $\lambda_i \geq 0$ and ν_i called Lagrange multipliers or dual variables
- objective is *augmented* with weighted sum of constraint functions

Lagrange dual function

(Lagrange) dual function $g : \mathsf{R}^m \to \mathsf{R} \cup \{-\infty\}$

$$
g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)
$$

- minimum of augmented cost as function of weights
- can be $-\infty$ for some λ and ν
- g is concave (even if f_i not convex!)

example: LP

$$
\begin{array}{ll}\n\text{minimize} & c^T x \\
\text{subject to} & a_i^T x - b_i \le 0, \ i = 1, \dots, m \\
\text{Note that } L(x, \lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i) = -b^T \lambda + (A^T \lambda + c)^T x \\
\text{hence } g(\lambda) = \begin{cases} \n-b^T \lambda & \text{if } A^T \lambda + c = 0 \\
-\infty & \text{otherwise}\n\end{cases}\n\end{array}
$$

Lower bound property

if x is primal feasible, then

$$
g(\lambda,\nu)\leq f_0(x)
$$

proof: if $f_i(x) \leq 0$ and $\lambda_i \geq 0$,

$$
f_0(x) \ge f_0(x) + \sum_i \lambda_i f_i(x) + \sum_i \nu_i h_i(x) \ge \inf_z \left(f_0(z) + \sum_i \lambda_i f_i(z) + \sum_i \nu_i h_i(z) \right) = g(\lambda, \nu)
$$

 $f_0(x) - g(\lambda, \nu)$ is called the **duality gap**

minimize over primal feasible x to get, for any $\lambda \succeq 0$ and ν ,

$$
g(\lambda,\nu)\leq p^\star
$$

 $\lambda \in \mathbf{R}^m$ and $\nu \in \mathbf{R}^p$ are dual feasible if $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$

dual feasible points yield lower bounds on optimal value!

Lagrange dual problem

let's find **best** lower bound on p^* :

maximize $g(\lambda, \nu)$ subject to $\lambda \succeq 0$

- called (Lagrange) dual problem (associated with primal problem)
- always ^a convex problem, even if primal isn't!
- optimal value denoted d^*
- we always have $d^* \leq p^*$ (called *weak duality*)
- $p^* d^*$ is optimal duality gap

Strong duality

for convex problems, we (usually) have strong duality:

$$
d^\star=p^\star
$$

when strong duality holds, dual optimal λ^* serves as **certificate of optimality** for primal optimal point x^*

many conditions or *constraint qualifications* guarantee strong duality for convex problems

Slater's condition: if primal problem is strictly feasible (and convex), *i.e.*, there exists $x \in \mathrm{relint}\,D$ with

$$
f_i(x) < 0, \ i = 1, ..., m
$$

 $h_i(x) = 0, \ i = 1, ..., p$

then we have $p^{\star} = d^{\star}$

Dual of linear program

(primal) LP

minimize $c^T x$ subject to $Ax \preceq b$

• n variables, m inequality constraints

dual of LP is (after making implicit equality constraints explicit)

maximize $-b^T\lambda$ subject to $A^T \lambda + c = 0$ $\lambda \succ 0$

- dual of LP is also an LP (indeed, in std LP format)
- m variables, n equality constraints, m nonnegativity contraints

for LP we have strong duality except in one (pathological) case: primal and dual both infeasible $(p^* = +\infty, d^* = -\infty)$

Dual of quadratic program

(primal) QP

minimize $x^T P x$ subject to $Ax \preceq b$ we assume $P \succ 0$ for simplicity Lagrangian is $L(x, \lambda) = x^T P x + \lambda^T (Ax - b)$ $\nabla_x L(x, \lambda) = 0$ yields $x = -(1/2)P^{-1}A^T\lambda$, hence dual function is

$$
g(\lambda) = -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda
$$

- concave quadratic function
- all $\lambda \succeq 0$ are dual feasible

dual of QP is

$$
\begin{array}{ll}\text{maximize} & -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda\\ \text{subject to} & \lambda \succeq 0 \end{array}
$$

. . . another QP

Equality constrained least-squares

minimize $x^T x$ subject to $Ax = b$ A is fat, full rank (solution is $x^* = A^T (AA^T)^{-1}b$)

dual function is

$$
g(\nu) = \inf_{x} \left(x^T x + \nu^T (Ax - b) \right) = -\frac{1}{4} \nu^T A A^T \nu - b^T \nu
$$

dual problem is

maximize
$$
-\frac{1}{4} \nu^T A A^T \nu - b^T \nu
$$

 $T \rightarrow -1$

solution: $\nu^* = -2(AA^T)^{-1}b$

can check $d^* = p^*$

Introducing equality constraints

idea: simple transformation of primal problem can lead to very different dual

example: unconstrained geometric programming

primal problem:

$$
\text{minimize } \log \sum_{i=1}^{m} \exp(a_i^T x - b_i)
$$

dual function is constant $g = p^*$ (we have strong duality, but it's useless)

now rewrite primal problem as

minimize
$$
\log \sum_{i=1}^{m} \exp y_i
$$

subject to $y = Ax - b$

let us introduce

- m new variables y_1, \ldots, y_m
- m new equality constraints $y = Ax b$

dual function

$$
g(\nu) = \inf_{x,y} \left(\log \sum_{i=1}^{m} \exp y_i + \nu^{T} (Ax - b - y) \right)
$$

• infimum is
$$
-\infty
$$
 if $A^T \nu \neq 0$

• assuming $A^T \nu = 0$, let's minimize over y:

$$
\frac{e^{y_i}}{\sum_{j=1}^m e^{y_j}} = \nu_i
$$

solvable iff $\nu_i > 0$, $\mathbf{1}^T \nu = 1$

$$
g(\nu) = -\sum_{i} \nu_i \log \nu_i - b^T \nu
$$

• same expression if
$$
\nu \succeq 0
$$
, $\mathbf{1}^T \nu = 1$ (0 log 0 = 0)

dual problem

maximize
$$
-b^T \nu - \sum_i \nu_i \log \nu_i
$$

subject to $\mathbf{1}^T \nu = 1$, $(\nu \succeq 0)$
 $A^T \nu = 0$

moral: trivial reformulation can yield different dual

Duality in algorithms

many algorithms produce at iteration k

- a primal feasible $x^{(k)}$
- a dual feasible $\lambda^{(k)}$ and $\nu^{(k)}$

with $f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)}) \rightarrow 0$ as $k \rightarrow \infty$

hence at iteration k we know $p^* \in \left[g(\lambda^{(k)}, \nu^{(k)}), f_0(x^{(k)})\right]$

- useful for stopping criteria
- algorithms that use dual solution are often more efficient $(e.g., LP)$

Nonheuristic stopping criteria

absolute error $= f_0(x^{(k)}) - p^* \leq \epsilon$

stopping criterion: until $\left(f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)}) \leq \epsilon \right)$

$$
\text{relative error} = \frac{f_0(x^{(k)}) - p^\star}{|p^\star|} \leq \epsilon
$$

stopping criterion:

$$
\text{until } \bigg(g\big(\lambda^{(k)}, \nu^{(k)} \big) > 0 \text{ } \And \text{ } \frac{f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)})}{g(\lambda^{(k)}, \nu^{(k)})} \leq \epsilon \bigg) \text{ } \text{ or } \bigg(f_0\big(x^{(k)} \big) < 0 \text{ } \And \text{ } \frac{f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)})}{-f_0(x^{(k)})} \leq \epsilon \bigg)
$$

achieve **target value** ℓ or, prove ℓ is unachievable (*i.e.*, determine either $p^* \leq \ell$ or $p^* > \ell$)

stopping criterion: until $(f_0(x^{(k)}) \leq \ell$ or $g(\lambda^{(k)}, \nu^{(k)}) > \ell$

Complementary slackness

suppose x^* , λ^* , and ν^* are primal, dual feasible with zero duality gap (hence, they are primal, dual optimal)

$$
f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right) \leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)
$$

hence we have $\sum_{i=1}^m \lambda_i^* f_i(x^*) = 0$, and so

$$
\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m
$$

- called complementary slackness condition
- *i*th constraint inactive at optimum $\implies \lambda_i = 0$
- $\lambda_i^* > 0$ at optimum $\implies i$ th constraint active at optimum

KKT optimality conditions

suppose

- \bullet f_i are differentiable
- x^* , λ^* are (primal, dual) optimal, with zero duality gap

by complementary slackness we have

$$
f_0(x^*) + \sum_i \lambda_i^* f_i(x^*) = \inf_x \left(f_0(x) + \sum_i \lambda_i^* f_i(x) + \sum_i \nu_i^* f_i(x) \right)
$$

i.e., x^* minimizes $L(x, \lambda^*, \nu^*)$

therefore

$$
\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0
$$

so if x^* , λ^* , and ν^* are (primal, dual) optimal, with zero duality gap, they satisfy

$$
f_i(x^*) \le 0
$$

\n
$$
h_i(x^*) = 0
$$

\n
$$
\lambda_i^* \ge 0
$$

\n
$$
\lambda_i^* f_i(x^*) = 0
$$

\n
$$
\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0
$$

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, if the problem is convex and x^* , λ^* satisfy KKT, then they are (primal, dual) optimal

Geometric interpretation of duality

consider set

$$
\mathcal{A} = \{ (u, t) \in \mathbf{R}^{m+1} \mid \exists x \ f_i(x) \le u_i, \ f_0(x) \le t \}
$$

- A is convex if f_i are
- for $\lambda \succeq 0$, $g(\lambda) = \inf \left\{ \begin{array}{c} \left[\begin{array}{c} \lambda \\ 1 \end{array} \right]^T \left[\begin{array}{c} u \\ t \end{array} \right] & \left[\begin{array}{c} u \\ t \end{array} \right] \in \mathcal{A} \right\}$ \overline{u} t $\overline{\mathcal{A}}$ $t + \lambda^T u = g(\lambda)$ $g(\lambda)$ – $\begin{bmatrix} \lambda \\ 1 \end{bmatrix}$

(Idea of) proof of Slater's theorem

 $\begin{bmatrix} \lambda^* \\ 1 \end{bmatrix}$

 \boldsymbol{u}

problem convex, strictly feasible \implies strong duality t \mathcal{A} p^{\star}

- $(0, p^*) \in \partial \mathcal{A} \Rightarrow \exists$ supporting hyperplane at $(0, p^*)$: $(u, t) \in \mathcal{A} \Longrightarrow \mu_0(t - p^*) + \mu^T u > 0$
- $\mu_0 \geq 0, \mu \geq 0, (\mu, \mu_0) \neq 0$
- strong duality $\Leftrightarrow \exists$ supporting hyperplane with $\mu_0 > 0$: for $\lambda^* = \mu/\mu_0$, we have $p^{\star} \leq t + {\lambda^{\star}}^T u \;\; \forall (t,u) \in \mathcal{A}, \;\; p^{\star} \leq g(\lambda^{\star})$
- Slater's condition: there exists $(u, t) \in \mathcal{A}$ with $u \prec 0$; implies that all supporting hyperplanes at $(0, p^*)$ are non-vertical $(\mu_0 > 0)$

Sensitivity analysis via duality

define $p^*(u)$ as the optimal value of

minimize $f_0(x)$, subject to $f_i(x) \leq u_i$, $i = 1, \ldots, m$

 λ^* gives lower bound on $p^*(u)$: $p^*(u) \geq p^* - \sum_{i=1}^m \lambda_i^* u_i$

- if λ_i^* large: $u_i < 0$ greatly increases p^*
- if λ_i^* small: $u_i > 0$ does not decrease p^* too much

if $p^*(u)$ is differentiable, $\lambda_i^* = -\frac{\partial p^*(0)}{\partial u_i}$, λ_i^* is sensitivity of p^* w.r.t. *i*th constraint

Generalized inequalities

$$
\begin{array}{ll}\text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \quad i = 1, \dots, L \end{array}
$$

- \bullet \preceq_{K_i} are generalized inequalities on \mathbf{R}^{m_i}
- $f_i: \mathbf{R}^n \to \mathbf{R}^{m_i}$ are K_i -convex

Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_L} \rightarrow \mathbb{R}$,

$$
L(x, \lambda_1, \ldots, \lambda_L) = f_0(x) + \lambda_1^T f_1(x) + \cdots + \lambda_L^T f_L(x)
$$

dual function

$$
g(\lambda_1,\ldots,\lambda_L)=\inf_x \left(f_0(x)+\lambda_1^Tf_1(x)+\cdots+\lambda_L^Tf_L(x)\right)
$$

 λ_i dual feasible if $\lambda_i \succeq_{K_i^{\star}} 0$, $g(\lambda_1, \ldots, \lambda_L) > -\infty$

lower bound property: if x primal feasible and $(\lambda_1, \ldots, \lambda_L)$ is dual feasible, then

$$
g(\lambda_1,\ldots,\lambda_L)\leq f_0(x)
$$

(hence, $g(\lambda_1, \ldots, \lambda_L) \leq p^*$)

dual problem

$$
\begin{array}{ll}\text{maximize} & g(\lambda_1,\ldots,\lambda_L) \\ \text{subject to} & \lambda_i \succeq_{K_i^\star} 0, \hspace{2mm} i=1,\ldots,L \end{array}
$$

weak duality: $d^* \leq p^*$ always

strong duality: $d^* = p^*$ usually

Slater condition: if primal is strictly feasible, $i.e.,$

 $\exists x \in \text{relint } D: f_i(x) \prec_{K_i} 0, i = 1, \ldots, L$

then $d^* = p^*$

Example: semidefinite programming

$$
\begin{array}{ll}\n\text{minimize} & c^T x\\ \n\text{subject to} & F_0 + x_1 F_1 + \dots + x_n F_n \preceq 0\\ \n\text{Lagrangian (multiplier } Z \succeq 0)\n\end{array}
$$

$$
L(x,Z) = cT x + \mathbf{Tr} Z(F_0 + x_1 F_1 + \cdots + x_n F_n)
$$

dual function

$$
g(Z) = \inf_{x} \left(c^{T}x + \text{Tr } Z(F_0 + x_1 F_1 + \dots + x_n F_n) \right)
$$

=
$$
\begin{cases} \text{Tr } F_0 Z & \text{if } \text{Tr } F_i Z + c_i = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}
$$

dual problem

$$
\begin{array}{ll}\text{maximize} & \text{Tr } F_0 Z\\ \text{subject to} & \text{Tr } F_i Z + c_i = 0, \quad i = 1, \dots, n\\ & Z = Z^T \succeq 0 \end{array}
$$

strong duality holds if there exists x with $F_0 + x_1F_1 + \cdots + x_nF_n \prec 0$