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1 Introduction

The story of the invention of Huffman codes is described in an article by Gary Stix in the September
1991 issue of Scientific American, pp. 54, 58 ([4]). The following is a quote from the article.

PROFILE: DAVID A. HUFFMAN
Encoding the “Neatness” of Ones and Zeroes

Large networks of IBM computers use it. So do high-definition television, modems and a popular
electronic device that takes the brain work out of programming a videocassette recorder. All these
digital wonders rely on the results of a 40-year-old term paper by a modest Massachusetts Institute
of Technology graduate student-a data compression scheme known as Huffman encoding.
In 1951 David A. Huffman and his classmates in an electrical engineering graduate course on
information theory were given the choice of a term paper or a final exam. For the term paper,
Huffman’s professor, Robert M. Fano, had assigned what at first appeared to be a simple problem.
Students were asked to find the most efficient method of representing numbers, letters or other
symbols using a binary code. Besides being a nimble intellectual exercise, finding such a code would
enable information to be compressed for transmission over a computer network or for storage in a
computer’s memory.
Huffman worked on the problem for months, developing a number of approaches, but none that he
could prove to be the most efficient. Finally, he despaired of ever reaching a solution and decided
to start studying for the final. Just as he was throwing his notes in the garbage, the solution came
to him. “It was the most singular moment of my life,” Huffman says. “There was the absolute
lightning of sudden realization.”
That epiphany added Huffman to the legion of largely anonymous engineers whose innovative
thinking forms the technical underpinnings for the accoutrements of modem living-in his case,
from facsimile machines to modems and a myriad of other devices. “Huffman code is one of the
fundamental ideas that people in computer science and data communications are using all the
time,” says Donald E. Knuth of Stanford University, who is the author of the multivolume series
The Art of Computer Programming. Huffman says he might never have tried his hand at the
problem-much less solved it at the age of 25-if he had known that Fano, his professor, and Claude
E. Shannon, the creator of information theory, had struggled with it. “It was my luck to be there at
the right time and also not have my professor discourage me by telling me that other good people
had struggled with this problem,” he says.

∗Department of Computer Science; New Mexico State University; Las Cruces, NM 88003; ipivkina@cs.nmsu.edu.
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2 Shannon-Fano Coding 1944

In this section we will study work of Shannon and Fano, in particular, definition of a unit of
information, how to determine the amount of information, and a recording procedure (Shannon-
Fano coding) they developed for improving the efficiency of transmission by reducing the number
of digits required to transmit a message. Shannon-Fano coding was developed independently by
Shannon and Fano in 1944. A greedy strategy can be used to produce a Shannon-Fano coding.
The strategy uses a top-down approach and does not necessarily produce the optimal code. Let us
start with the notion of a unit of information. Read how it is defined in section I from Fano [1].

∞∞∞∞∞∞∞∞

I Definition of the Unit of Information

In order to define, in an appropriate and useful manner, a unit of information, we must first consider
in some detail the nature of those processes in our experience which are generally recognized as conveying
information. A very simple example of such processes is a yes-or-no answer to some specific question. A
slightly more involved process is the indication of one object in a group of N objects, and, in general, the
selection of one choice from a group of N specific choices. The word “specific” is underlined because
such a qualification appears to be essential to these information-conveying processes. It means that the
receiver is conscious of all possible choices, as is, of course, the transmitter (that is, the individual or
the machine which is supplying the information). For instance, saying “yes” or “no” to a person who
has not asked a question obviously does not convey any information. Similarly, the reception of a code
number which is supposed to represent a particular message does not convey any information unless
there is available a code book containing all the messages with the corresponding code numbers.

Considering next more complex processes, such as writing or speaking, we observe that these pro-
cesses consist of orderly sequences of selections from a number of specific choices, namely, the letters
of the alphabet or the corresponding sounds. Furthermore, there are indications that the signals trans-
mitted by the nervous system are of a discrete rather than of a continuous nature, and might also be
considered as sequences of selections. If this were the case, all information received through the senses
could be analyzed in terms of selections. The above discussion indicates that the operation of selection
forms the bases of a number of processes recognized as conveying information, and that it is likely to be
of fundamental importance in all such processes. We may expect, therefore, that a unit of information,
defined in terms of a selection, will provide a useful basis for a quantitative study of communication
systems.

Considering more closely this operation of selection, we observe that different informational value is
naturally attached to the selection of the same choice, depending on how likely the receiver considered
the selection of that particular choice to be. For example, we would say that little information is given
by the selection of a choice which the receiver was almost sure would be selected. It seems appropriate,
therefore, in order to avoid difficulty at this early stage, to use in our definition the particular case of
equally likely choices - that is, the case in which the receiver has no reason to expect that one choice
will be selected rather than any other. In addition, our natural concept of information indicates that
the information conveyed by a selection increases with the number of choices from which the selection
is made, although the exact functional relation between these two quantities is not immediately clear.

On the basis of the above considerations, it seems reasonable to define as the unit of information
the simplest possible selection, namely the selection between two equally likely choices, called, hereafter,
the “elementary selection”. For completeness, we must add to this definition the postulate, consistent
with our intuition, that N independent selections of this type constitute N units of information. By
independent selections we mean, of course, selections which do not affect one another. We shall adopt
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for this unit the convenient name of “bit” (from “binary digit”), suggested by Shannon. We shall also
refer to a selection between two choices (not necessarily equally likely) as a “binary selection”, and to
a selection from N choices, as an N -order selection. When the choices are, a priori, equally likely, we
shall refer to the selection as an “equally likely selection”.

∞∞∞∞∞∞∞∞

Exercise 2.1. Fano writes about specific questions and specific choices. Explain in your own
words what he means by specific. Give an example of a specific question or choice. Explain why
it is specific. Give an example of a question or choice which is not specific. Explain why it is not
specific.

Exercise 2.2. Give an example of the simplest possible selection (or the “elementary selection”).
Give an example of a selection which is not the simplest possible one.

Exercise 2.3. How much information does one flip of a coin convey? How much information is
conveyed in N flips of a coin?

Once the unit of information is defined, it can be used to measure information conveyed by
selections and messages. Read section II from Fano where he talks about selection from several
equally likely choices.

∞∞∞∞∞∞∞∞

II Selection from N Equally Likely Choices

Consider now the selection of one among a number, N , of equally likely choices. In order to
determine the amount of information corresponding to such a selection, we must reduce this more
complex operation to a series of independent elementary operations. The required number of these
elementary selections will be, by definition, the measure in bits of the information given by such an
N -order selection.

Let us assume for the moment that N is a power of two. In addition (just to make the operation of
selection more physical), let us think of the N choices as N objects arranged in a row, as indicated in
Figure 1.

Fig. 1 Selection procedure for equally likely
choices.

These N objects are first divided in two equal groups, so that the object to be selected is just as
likely to be in one group as in the other. Then the indication of the group containing the desired object
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is equivalent to one elementary selection, and, therefore, to one bit. The next step consists of dividing
each group into two equal subgroups, so that the object to be selected is again just as likely to be in
either subgroup. Then one additional elementary selection, that is a total of two elementary selections,
will suffice to indicate the desired subgroup (of the possible four subgroups). This process of successive
subdivisions and corresponding elementary selections is carried out until the desired object is isolated
from the others. Two subdivisions are required for N = 4, three from N = 8, and, in general, a number
of subdivisions equal to log2 N , in the case of an N -order selection.

The same process can be carried out in a purely mathematical form by assigning order numbers
from 0 to N − 1 to the N choices. The numbers are then expressed in the binary system, as shown in
Figure 1, the number of binary digits (0 or 1) required being equal to log2 N . These digits represent
an equal number of elementary selections and, moreover, correspond in order to the successive divisions
mentioned above. In conclusion, an N -order, equally likely selection conveys an amount of information

HN = log2 N (1)

The above result is strictly correct only if N is a power of two, in which case HN is an integer. If N
is not a power of two, then the number of elementary selections required to specify the desired choice
will be equal to the logarithm of either the next lower or the next higher power of two, depending on
the particular choice selected. Consider, for instance, the case of N = 3. The three choices, expressed
as binary numbers, are then

00; 01; 10.

If the binary digits are read in order from left to right, it is clear that the first two numbers require two
binary selections - that is, two digits, while the third number requires only the first digit, 1, in order to
be distinguished from the other two. In other words, the number of elementary selections required when
N is not a power of two is equal to either one of the two integers closest to log2 N . It follows that the
corresponding amount of information must lie between these two limits, although the significance of a
non-integral value of H is not clear as this point. It will be shown in the next section that Eq.(1) is
still correct when N is not a power of two, provided HN is considered as an average value over a large
number of selections.

∞∞∞∞∞∞∞∞

Exercise 2.4. Assume that we select one letter from the English alphabet at random. How much
information does this selection convey?

Exercise 2.5. Assume that we have the following equally likely choices expressed as binary num-
bers: 000, 001, 010, 100, 101, and 110. If the binary digits are read in order from left to right, how
many selections does each of the numbers require? Will your answer change if the digits are read
from right to left?

Now that we know the amount of information conveyed by one selection, how can we determine
the amount of information contained in a sequence of selections, or in a message? Read the following
quote from section III from Fano [1].

∞∞∞∞∞∞∞∞

III Messages and Average Amount of Information
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We have determined in the preceding section the amount of information conveyed by a single
selection from N equally likely choices. In general, however, we have to deal with not one but long
series of such selections, which we call messages. This is the case, for instance, in the transmission of
written intelligence. Another example is provided by the communication system known as pulse-code
modulation, in which audio waves are sampled at equal time intervals and then each sample is quantized,
that is approximated by the closest of a number N of amplitude levels.

Let us consider, then, a message consisting of a sequence of n successive N -order selections. We
shall assume, at first, that these selections are independent and equally likely. In this simpler case, all
the different sequences which can be formed equal in number to

S = Nn, (2)

are equally likely to occur. For instance, in the case of N = 2 (the two choices being represented by
numbers 0 and 1) and n = 3, the possible sequences would be 000, 001, 010, 100, 011, 101, 110, 111.
The total number of these sequences is S = 8 and the probability of each sequence is 1/8. In general,
therefore, the ensemble of the possible sequences may be considered as forming a set of S equally likely
choices, with the result that the selection of any particular sequence yields an amount of information

HS = log2 S = n log2N. (3)

In words, n independent equally likely selections give n times as much information as a single selection
of the same type. This result is certainly not surprising, since it is just a generalization of the postulate,
stated in Section II, which forms an integral part of the definition of information.

It is often more convenient, in dealing with long messages, to use a quantity representing the average
amount of information per N -order selection, rather than the total information corresponding to the
whole message. We define this quantity in the most general case as the total information conveyed by
a very long message divided by the number of selections in the message, and we shall indicate it with
the symbol HN , where N is the order of each selection. It is clear that when all the selections in the
message are equally likely and independent and, in addition, N is a power of two, the quantity HN is
just equal to the information actually given by each selection, that is

HN =
1

n
log2 S = log2N. (4)

We shall show now that this equation is correct also when N is not a power of two, in which case HN

has to be actually an average value taken over a sufficiently long sequence of selections.
The number S of different and equally likely sequences which can be formed with n independent

and equally likely selections is still given by Eq.(2), even when N is not a power of two. On the contrary,
the number of elementary selections required to specify any one particular sequence must be written
now in the form

BS = log2 S + d, (5)

where d is a number, smaller in magnitude than unity, which makes BS an integer and which depends
on the particular sequence selected. The average amount of information per N -order selection is then,
by definition,

HN = lim
n→∞

1

n
(log2 S + d). (6)

Since N is a constant and since the magnitude of d is smaller than unity while n approaches infinity,
this equation together with Eq.(2) yields

HN = log2N. (7)
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We shall consider now the more complex case in which the selections, although still independent, are not
equally likely. In this case, too, we wish to compute the average amount of information per selection.
For this purpose, we consider again the ensemble of all the messages consisting of independent selections
and we look for a way of indicating any one particular message by means of elementary selections. If
we were to proceed as before, and divide the ensemble of messages in two equal groups, the selection of
the group containing the desired message would no longer be a selection between equally likely choices,
since the sequences themselves are not equally likely. The proper procedure is now, of course, to make
equal for each group not the number of messages in it but the probability of its containing the desired
message. Then the selection of the desired group will be a selection between equally likely choices. This
procedure of division and selection is repeated over and over again until the desired message has been
separated from the others. The successive selections of groups and subgroups will then form a sequence
of independent elementary selections.

One may observe, however, that it will not generally be possible to form groups equally likely to
contain the desired message, because shifting any one of the messages from one group to the other
will change, by finite amounts, the probabilities corresponding to the two groups. On the other hand,
if the length of the messages is increased indefinitely, the accuracy with which the probabilities of
the two groups can be made equal becomes better and better since the probability of each individual
message approaches zero. Even so, when the resulting subgroups include only a few messages after
a large number of divisions, it may become impossible to keep the probabilities of such subgroups as
closely equal as desired unless we proceed from the beginning in an appropriate manner as indicated
below. The messages are first arranged in order of their probabilities, which can be easily computed
if the probabilities of the choices are known. The divisions in groups and subgroups are then made
successively without changing the order of the messages, as illustrated in Figure 2. In this manner,
the smaller subgroups will contain messages with equal or almost equal probabilities, so that further
subdivisions can be performed satisfactory. It is clear that when the above procedure is followed, the

Fig. 2
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number of binary selections required to separate any message from the others varies from message to
message. Messages with a high probability of being selected require less binary selections than those
with lower probabilities. This fact is in agreement with the intuitive notion that the selection of a little-
probable message conveys more information than the selection of a more-probable one. Certainly, the
occurrence of an event which we know a priori to have a 99 per cent probability is hardly surprising or, in
our terminology, yields very little information, while the occurrence of an event which has a probability
of only 1 per cent yields considerably more information.

∞∞∞∞∞∞∞∞

In the above, Figure 2 illustrates a method which can be used to code messages. Assume that
we are given an ensemble of messages and probabilities of all the messages in the ensemble. First,
we sort the messages in decreasing order of their probabilities. Then, we divide the sequence of
messages into two consecutive groups in such a way that the probability of a message being in the
first group is as nearly equal to the probability of a message being in the second group as possible.
After the 1st division, we have two groups each of which consists of one or more messages. If a
part consists of more than one message, we divide it into two parts again in the same manner -
probabilities of the two parts should be as nearly equal as possible. We continue divisions until
every part contains one message. Each division of a group of messages contributes one binary
digit to codes of the messages in the group. When divided into two subgroups, messages in one
subgroup have 0 added to their codes; messages in the other subgroup have 1 added to their codes.
This method of encoding messages was developed independently by Shannon [3]. We will call it
Shannon-Fano coding. The following quote from [3] gives one more description of Shannon-Fano
coding: “. . . arrange the messages . . . in order of decreasing probability. Divide this series into two
groups of as nearly equal probability as possible. If the message is in the first group its binary digit
will be 0, otherwise 1. The groups are similarly divided into subsets of nearly equal probability
and the particular subset determines the second binary digit. This process is continued until each
subset contains only one message.”

Let us see how Shannon-Fano coding is done in the example from Figure 2. We start with
messages 00, 01, 10, 02, 20, 11, 12, 21, and 22; their probabilities are listed in column “P(i)”. After
the 1st division, the two groups of messages are {00} and {01, 10, 02, 20, 11, 12, 21, 22} with
probabilities 0.49 and 0.51, respectively. Message 00 is assigned code 0; messages in the second
group have their codes begin with 1. Since the second group consists of more than one message it is
divided again in two groups, {01, 10} and {02, 20, 11, 12, 21, 22}, with probabilities 0.28 and 0.23,
respectively. Messages 01 and 10 have 0 added as 2nd binary digit in their codes; their codes begin
with “10”. Messages 02, 20, 11, 12, 21, and 22 have 1 added as 2nd binary digit in their codes.
Divisions continue until each group contains one message only. Codes obtained for each message
are listed in column “Recoded message”.

Successive divisions of messages and obtained message codes can be represented as a code tree
as shown in Figure 3. Each leaf is labeled with a message and its probability. Each internal node
is labeled with the sum of probabilities of the leaves in its subtree. The root is labeled 1 - the sum
of probabilities of all the messages. Each edge from a node to its child is labeled with a digit (0 or
1) which appears in codes of leaves of the subtree rooted at the child. The code of a message can
be obtained by reading labels of edges on the path from the root of the tree to the leaf containing
the message.

Exercise 2.6. Assume that we have messages A, B, C, D, E, F, G. The probability of A is 0.12,
the probability of B is 0.34, the probability of C is 0.05, the probability of D is 0.22, the probability
of E is 0.15, the probability of F is 0.02, and the probability of G is 0.1. Use Shannon-Fano coding
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Fig. 3 Tree corresponding to
the coding scheme in Figure 2.

to produce recoded messages for each of A, B, C, D, E, F, G. Represent obtained coding scheme
as a tree.

Exercise 2.7. Assume that there are n messages. For each message i, we know the probability of
the message, P(i). Write a pseudocode of the procedure described by Fano (Shannon-Fano coding).
What is the running time of the procedure?

Exercise 2.8. Implement Fano’s method. Given a set of messages with their probabilities, your
program should output codes for each message.

Sometimes, instead of probabilities we know frequencies of messages - how often a message
appears in a certain text. In this case, we can compute probabilities by assuming that they are
proportional to corresponding frequencies. In other words, the probability of a message is set to
be the frequency of the message divided by the sum of frequencies of all messages. However, in the
Shannon-Fano coding procedure we do not need to compute probabilities, we can use frequencies
instead.

Exercise 2.9. Argue that if you use frequencies instead of probabilities in Shannon-Fano coding,
you get the same codes for messages as you would get when using probabilities.

Exercise 2.10. Use Fano’s procedure to produce encodings for the six symbols with their frequen-
cies shown in Figure 4. Draw a code tree that corresponds to the encoding you obtained.

Symbol Frequency

A 56

B 40

C 33

D 75

E 6

F 24

Fig. 4

3 Huffman encoding: I

Please read the Introduction from Huffman’s paper “A Method for the Construction of Minimum-
Redundancy Codes” ([2]) quoted below.
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∞∞∞∞∞∞∞∞

Introduction

One important method of transmitting messages is to transmit in their place sequences of symbols.
If there are more messages which might be sent than there are kinds of symbols available, then some
of the messages must use more than one symbol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission (length) of a message is directly proportional to
the number of symbols associated with it. In this paper, the symbol or sequence of symbols associated
with a given message will be called the “message code.” The entire number of messages which might
be transmitted will be called the “message ensemble.” The mutual agreement between the transmitter
and the receiver about the meaning of the code for each message of the ensemble will be called the
“ensemble code.”

Probably the most familiar ensemble code was stated in the phrase “one if by land and two if by
sea”, and the message codes were “one” and “two.”

In order to formalize the requirements of an ensemble code, the coding symbols will be represented
by numbers. Thus, if there are D different types of symbols to be used in coding, they will be represented
by the digits 0, 1, 2, .., (D− 1). For example, a ternary code will be constructed using the three digits
0,1, and 2 as coding symbols.

The number of messages in the ensemble will be called N . Let P (i) be the probability of the ith
message. Then

N∑

i=1

P (i) = 1 (1)

The length of a message, L(i), is the number of coding digits assigned to it. Therefore, the average
message length is:

Lav =

N∑

i=1

P (i)L(i) (2)

The term “redundancy” has been defined by Shannon as a property of codes. A “minimum-redundancy
code” will be defined here as an ensemble code which, for a message ensemble consisting of a finite
number of members, N , and for a given number of coding digits, D, yields the lowest possible average
message length. In order to avoid the use of the lengthy term “minimum-redundancy,” this term will
be replaced here by “optimum.” It will be understood then that, in this paper, “optimum code” means
“minimum-redundancy code.”

The following basic restrictions will be imposed on an ensemble code:

(a) No two messages will consist of identical arrangements of coding digits.

(b) The message codes will be constructed in such a way that no additional indication is necessary to
specify where a message code begins and ends once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded in such a way that its code appears, digit for
digit, as the first part of any message code of greater length. Thus, 01, 102, 111, and 202 are
valid message codes for an ensemble of four members. For instance, a sequence of these messages
1111022020101111102 can be broken up into the individual messages 111-102-202-01-01-111-102. All
the receiver needs to know is the ensemble code. However, if the ensemble has individual message
codes including 11, 111, 102, and 02, then when a message sequence starts with the digits 11, it is not
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immediately certain whether the message 11 has been received or whether it is only the first two digits
of the message 111. Moreover, even if the sequence turns out to be 11102, it is still not certain whether
111-02 or 11-102 was transmitted. In this example, change of one of the two message codes 111 or 11
indicated.

C.E. Shannon and R. M. Fano have developed ensemble coding procedures for the purpose of
proving that the average number of binary digits required per message approaches from above the
average amount of information per message. Their coding procedures are not optimum, but approach
the optimum behavior when N approaches infinity. Some work has been done by Kraft toward deriving
a coding method which gives an average code length as close to possible to the ideal when the ensemble
contains a finite number of members. However, up to the present time, no definite procedure has been
suggested for the construction of such a code to the knowledge of the author. It is the purpose of this
paper to derive such a procedure.

∞∞∞∞∞∞∞∞

Exercise 3.1. In the Introduction Huffman defined a notion of “message ensemble”. What is the
message ensemble in the example of Figure 2? What is the average message length of the encoding
in Figure 2?

Exercise 3.2. What is the average message length of the encoding in Exercise 2.10?

Exercise 3.3. Does the coding in Figure 2 satisfy restrictions (a) and (b) from the Introduction of
Huffman’s paper? Will an encoding produced by Shannon-Fano method always satisfy restrictions
(a) and (b), or not?

Exercise 3.4. Let a message ensemble consists of three messages: A, B, and C. Assume that only
two symbols, 0 and 1, can be used in coding. Give an example of a code for the ensemble which
is not optimum. Prove that it is not optimum. You may choose any values for probabilities of
the messages. (Hint: In order to prove that the code is not optimum, give another code that has
smaller average message length.)

4 Huffman encoding: II

Read the following excerpts from sections Derived Coding Requirements and Optimum Binary
Code from Huffman’s paper ([2]).

∞∞∞∞∞∞∞∞

Derived Coding Requirements

For an optimum code, the length of a given message code can never be less than the length of a
more probable message code. If this requirement were not met, then a reduction in average message
length could be obtained by interchanging the codes for the two messages in question in such a way
that the shorter code becomes associated with the more probable message. Also, if there are several
messages with the same probability, then it is possible that the codes for these messages may differ in
length. However, the codes for these messages may be interchanged in any way without affecting the
average code length for the message ensemble. Therefore, it may be assumed that the messages in the
ensemble have been ordered in a fashion such that

P (1) ≥ P (2) ≥ · · · ≥ P (N − 1) ≥ P (N) (3)
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And that, in addition, for an optimum code, the condition

L(1) ≤ L(2) ≤ · · · ≤ L(N − 1) ≤ L(N) (4)

holds. This requirement is assumed to be satisfied throughout the following discussion.
It might be imagined that an ensemble code could assign q more digits to the N th message than

to the (N − 1)th message. However, the first L(N − 1) digits of the N th message must not be used
as the code for any other message. Thus the additional q digits would serve no useful purpose and
would unnecessarily increase Lav. Therefore, for an optimal code it is necessary that L(N) be equal to
L(N − 1).

The kth prefix of a message code will be defined as the first k digits of that message code. Basic
restriction (b) could then be restated as: No message shall be coded in such a way that its code is a
prefix of any other message, or that any of its prefixes are used elsewhere as a message code.

Imagine an optimum code in which no two of the messages coded with length L(N) have identical
prefixes of order L(N)− 1. Since an optimum code has been assumed, then none of these messages of
length L(N) can have codes or prefixes of any order which correspond to other codes. It would then
be possible to drop the last digit of all of this group of messages and thereby reduce the value of Lav .
Therefore, in an optimum code, it is necessary that at least two (and no more than D) of the codes
with length L(N) have identical prefixes of order L(N)− 1.

One additional requirement can be made for an optimum code. Assume that there exists a combi-
nation of the D different types of coding digits which is less than L(N) digits in length and which is
not used as a message code or which is not a prefix of a message code. Then this combination of digits
could be used to replace the code for the N th message with a consequent reduction of Lav. Therefore,
all possible sequences of L(N) − 1 digits must be used either as message codes, or must have one of
their prefixes used as message codes.

The derived restrictions for an optimum code are summarized in condensed form below and consid-
ered in addition to restrictions (a) and (b) given in the first part of this paper:

(c) L(1) ≤ L(2) ≤ · · · ≤ L(N − 1) = L(N). (5)

(d) At least two and not more than D of the messages with code length L(N) have codes which are
alike except for their final digits.

(e) Each possible sequence of L(N)− 1 digits must be used either as a message code or must have
one of its prefixes used as a message code.

Optimum Binary Code

For ease of development of the optimum coding procedure, let us now restrict ourselves to the
problem of binary coding. Later this procedure will be extended to the general case of D digits.

Restriction (c) makes it necessary that the two least probable messages have codes of equal length.
Restriction (d) places the requirement that, for D equal to two, there be only two of the messages with
coded length L(N) which are identical except for their last digits. The final digits of these two codes
will be one of the two binary digits, 0 and 1. It will be necessary to assign these two message codes to
the N th and the (N − 1)st messages since at this point it is not known whether or not other codes of
length L(N) exist. Once this has been done, these two messages are equivalent to a single composite
message. Its code (as yet undetermined) will be the common prefixes of order L(N) − 1 of these two
messages. Its probability will be the sum of the probabilities of the two messages from which it was
created. The ensemble containing this composite message in the place of its two component messages
will be called the first auxiliary message ensemble.
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This newly created ensemble contains one less message than the original. Its members should be
rearranged if necessary so that the messages are again ordered according to their probabilities. It may be
considered exactly as the original ensemble was. The codes for each of the two least probable messages
in this new ensemble are required to be identical except in their final digits; 0 and 1 are assigned as
these digits, one for each of the two messages. Each new auxiliary ensemble contains one less message
than the preceding ensemble. Each auxiliary ensemble represents the original ensemble with full use
made of the accumulated necessary coding requirements.

The procedure is applied again and again until the number of members in the most recently formed
auxiliary message ensemble is reduced to two. One of each of the binary digits is assigned to each of
these two composite messages. These messages are then combined to form a single composite message
with probability unity, and the coding is complete. Now let us examine Table I. The left-hand column

Table I (Huffman)

contains the ordered message probabilities of the ensemble to be coded. N is equal to 13. Since each
combination of two messages (indicated by a bracket) is accompanied by the assigning of a new digit
to each, then the total number of digits which should be assigned to each original message is the same
as the number of combinations indicated for that message. For example, the message marked *, or a
composite of which it is a part, is combined with others five times, and therefore should be assigned a
code length of five digits.

When there is no alternative in choosing the two least probable messages, then it is clear that the
requirements, established as necessary, are also sufficient for deriving an optimum code. There may
arise situations in which a choice may be made between two or more groupings of least likely messages.
Such a case arises, for example, in the fourth auxiliary ensemble of Table I. Either of the messages
of probability 0.08 could have been combined with that of probability 0.06. However, it is possible to
rearrange codes in any manner among equally likely messages without affecting the average code length,
and so a choice of either of the alternatives could have been made. Therefore, the procedure given is
always sufficient to establish an optimum binary code.

The lengths of all the encoded messages derived from Table I are given in Table II.
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Table II (Huffman)

Having now determined proper lengths of code for each message, the problem of specifying the
actual digits remains. Many alternatives exist. Since the combining of messages into their composites
is similar to the successive confluences of trickles, rivulets, brooks, and creeks into a final large river,
the procedure thus far described might be considered analogous to the placing of signs by a water-borne
insect at each of these junctions as he journeys downstream. It should be remembered that the code
which we desire is that one which the insect must remember in order to work his way back up stream.
Since the placing of the signs need not follow the same rule, such as “zero-right-returning”, at each
junction, it can be seen that there are at least 212 different ways of assigning code digits for our example.

The code in Table II was obtained by using the digit 0 for the upper message and the digit 1 for
the lower message of any bracket. It is important to note in Table I that coding restriction (e) is
automatically met as long as two messages (and not one) are placed in each bracket.

∞∞∞∞∞∞∞∞

Both, Shannon-Fano and Huffman algorithms are greedy algorithms. The Huffman algorithm
builds a code tree from bottom up while the Shannon-Fano algorithm builds a code tree from top
down.

Exercise 4.1. Draw a code tree that corresponds to Tables I and II in Huffman’s paper.

Exercise 4.2. Use the Huffman algorithm for messages and probabilities from Figure 2 (Fano).
What code words you get for each message? Is the encoding better or worse than the one obtained
by Fano?

Exercise 4.3. Use Huffman algorithm for symbols and frequencies from Figure 4. What code tree
do you get? What are code words for each symbol? Is the obtained encoding better or worse than
the one produced earlier by Shannon-Fano approach?

Exercise 4.4. Assume that message ensemble consists of n messages: 1, 2, . . . , n. Frequency
of message i is equal to Fibonacci number Fi (1 ≤ i ≤ n). Recall that F1 = 1, F2 = 1, Fk =
Fk−1 + Fk−2. What will a code tree produced by Huffman algorithm look like?

Exercise 4.5. Use Shannon-Fano approach for messages and probabilities from Table II (Huffman).
What code words you get for each message? Is the encoding better or worse than the one obtained
by Huffman?
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Exercise 4.6. Give your own example when Shannon-Fano procedure produces an optimal code.
You need to specify what the messages are, what their probabilities (or frequencies) are, compute
Shannon-Fano coding, and compare it with optimal code obtained by using Huffman procedure.

Exercise 4.7. Give your own example when Shannon-Fano procedure does not produce an optimal
code. You need to specify what the messages are, what their probabilities (or frequencies) are,
compute Shannon-Fano coding, and compare it with the optimal code obtained by using Huffman
procedure.

Exercise 4.8. Given a message ensemble and the ensemble code, how can you show that the code
is optimal? Is verification of a code being optimal easier or not than finding an optimal code?

Exercise 4.9. You are given a code tree for a message ensemble. If you swap two leaves in the
tree and update labels of internal nodes so that they are equal to the sum of probabilities of their
descendant leaves, you get a different code for the ensemble. Consider the following conjecture: if
every code obtained by swapping two leaves in the code tree is no better (is the same or worse)
than the code of the original tree, then the code of the original tree is an optimum code. Prove the
conjecture or give a counterexample.

Exercise 4.10. Write a program that would produce a Huffman encoding given messages and their
frequencies.

Exercise 4.11. In the procedure described by Fano, the divisions in groups and subgroups are
made without changing the order of the messages. Changing the order of messages may allow us
to divide the group into subgroups with less difference between probabilities of subgroups. Assume
that at every step of the Fano procedure we get the best possible split. Will this modified procedure
yield an optimum code?

5 Huffman encoding: III

In the paper Huffman describes a generalization of his method to the case when three or more digits
are used for coding. Read the following section Generalization of the Method from Huffman’s paper
([2]).

∞∞∞∞∞∞∞∞

Generalization of the Method

Optimum coding of an ensemble of messages using three or more types of digits is similar to the
binary coding procedure. A table of auxiliary message ensembles similar to Table I will be used. Brackets
indicating messages combined to form composite messages will be used in the same way as was done
in Table I. However, in order to satisfy restriction (e), it will be required that all these brackets, with
the possible exception of one combining the least probable messages of the original ensemble, always
combine a number of messages equal to D.

It will be noted that the terminating auxiliary ensemble always has one unity probability message.
Each preceding ensemble is increased in number by D − 1 until the first auxiliary ensemble is reached.
Therefore, if N1 is the number of messages in the first auxiliary ensemble, then (N1 − 1)/(D− 1) must
be an integer. However N1 = N − n0 + 1, where n0 is the number of the least probable messages
combined in a bracket in the original ensemble. Therefore, n0 (which, of course, is at least two and no
more than D) must be of such a value that (N − n0)/(D − 1) is an integer.
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Table III (Huffman)

In Table III an example is considered using an ensemble of eight messages which is to be coded with
four digits; n0 is found to be 2. The code listed in the table is obtained by assigning the four digits 0,
1, 2, and 3, in order, to each of the brackets.

∞∞∞∞∞∞∞∞

Exercise 5.1. Implement Huffman generalized method to produce encoding which uses a given
number of digits.

Notes to the Instructor

The project is designed for a junior level Data Structures and Algorithms course.
Story of the invention of Huffman codes is a great story that demonstrates that students can

do better than professors. David Huffman was a student in an electrical engineering course in
1951. His professor, Robert Fano, offered students a choice of taking a final exam or writing a
term paper. Huffman did not want to take the final so he started working on the term paper.
The topic of the paper was to find the most efficient (optimal) code. What professor Fano did
not tell his students was the fact that it was an open problem and that he was working on the
problem himself. Huffman spent a lot of time on the problem and was ready to give up when the
solution suddenly came to him. The code he discovered was optimal, that is, it had the lowest
possible average message length. The method that Fano had developed for this problem did not
always produce optimal code. Therefore, Huffman did better than his professor. Later Huffman
said that likely he would not have even attempted the problem if he had known that his professor
was struggling with it.

The project uses quotes from Fano’s and Huffman’s papers to look into greedy algorithms,
prefix-free codes, Huffman encoding, binary tree representations of codes, unit and amount of
information. Both Fano and Huffman encodings are produced by greedy algorithms. However, in
Fano’s approach the greedy algorithm does not find an optimal solution while in Huffman’s version
it does.
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The project is divided into several parts. Each part contains a reading assignment (read selected
quotes from the original sources and some additional explanations) and a list of tasks on the material
from the reading.
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