
since A is Noetherian (see [1, Exercise 7, p. 126]). Thus the height of M is exactly 2,
as required by (i). The proof of the theorem is complete.

ACKNOWLEDGMENTS. I wish to express my warm gratitude to Professor Ram Murty for an interesting
discussion that led to the idea of writing this paper.

REFERENCE

1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA,
1969.

Fabrizio Zanello, Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, K7L 3N6
Canada
fabrizio@mast.queensu.ca

Solving Inequalities and Proving
Farkas’s Lemma Made Easy

David Avis and Bohdan Kaluzny

1. INTRODUCTION. Every college student has learned how to solve a system of
linear equations, but how many would know how to solve Ax ≤ b for x ≥ 0 or show
that there is no solution? Solving a system of linear inequalities has traditionally been
taught only in higher level courses and is given an incomplete treatment in introductory
linear algebra courses. For example, the text of Strang [4] presents linear programming
and states Farkas’s lemma. It does not, however, include any proof of the finiteness of
the simplex method or a proof of the lemma. Recent developments have changed the
situation dramatically. Refinements of the simplex method by Bland [1] in the 1970s
led to simpler proofs of its finiteness, and Bland’s original proof was simplified further
by several authors. In this paper we use a variant of Bland’s pivot rule to solve a system
of inequalities directly, without any need for introducing linear programming. We give
a simple proof of the finiteness of the method, based on ideas contained in the paper
of Fukuda and Terlaky [3] on the related criss-cross method. Finally, if the system is
infeasible, we show how the termination condition of the algorithm gives a certificate
of infeasibility, thus proving the Farkas lemma. Terminology and notation used here
follows that of Chvátal’s linear programming book [2].

We consider the following problem: given a matrix A = [ai j] in Rm×n and a column
vector b in Rm , find x = (x1, x2, . . . , xn)

T that satisfies the following linear system, or
prove that no such vector x exists:

Ax ≤ b, x ≥ 0. (1)

We illustrate a simple method for doing this with an example:

−x1 − 2x2 + x3 ≤ −1

x1 − 3x2 − x3 ≤ 2 (2)

−x1 − 2x2 + 2x3 ≤ −2

152 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

with xi ≥ 0 (i = 1, 2, 3). We first convert this system of inequalities into a system of
equations by introducing a new nonnegative slack variable for each inequality. This
slack variable represents the difference between the right- and left-hand sides of the
inequality. In our example, we need three new variables, which we label x4, x5, and x6.
Putting these variables on the left-hand side, and the others on the right-hand side we
have the following system:

x4 = −1 + x1 + 2x2 − x3

x5 = 2 − x1 + 3x2 + x3 (3)

x6 = −2 + x1 + 2x2 − 2x3

It is easy to see that any nonnegative solution of (2) then extends to a nonnegative
solution of (3) by assigning the slack variables values via their respective equations.
Conversely, a nonnegative solution of (3) when restricted to x1, x2, and x3 gives a
solution to (2). We call a system of equations such as (3) a dictionary. The variables
on the left-hand side are called basic, and the variables on the right-hand side are
called cobasic. We get a basic solution to the equations in (3) by setting all the cobasic
variables to zero, which gives x4 = −1, x5 = 2, x6 = −2. Unfortunately this is not a
nonnegative solution. The algorithm proceeds as follows: it finds the smallest-indexed
basic variable that is set to a negative value. In this case it is x4. In the equation for x4

it identifies the cobasic variable with the smallest index that has a positive coefficient
(in this case it is x1), solves this equation for x1, and substitutes the result for x1 in the
other equations. This yields a new dictionary:

x1 = 1 − 2x2 + x3 + x4

x5 = 1 + 5x2 − x4 (4)

x6 = −1 − x3 + x4

The step we just performed is called a pivot operation, and it is the basic step of the
algorithm. In fact it is the only step: we simply repeat this operation. In (4), we first set
the cobasic (i.e., right-hand) variables to zero and get the basic solution x1 = 1, x5 = 1,
x6 = −1. Again, we find the basic variable with the smallest index and negative value,
namely, x6. In the equation for x6 we find the smallest-indexed cobasic variable with a
positive coefficient, here x4. We pivot by solving this equation for x4 and substituting
for x4 in the other equations, obtaining the new dictionary:

x1 = 2 − 2x2 + 2x3 + x6

x4 = 1 + x3 + x6 (5)

x5 = 0 + 5x2 − x3 − x6

We are now in luck. The basic solution is nonnegative, and its restriction to our
original three variables gives a feasible solution to (2): x1 = 2, x2 = 0, x3 = 0. So far
so good. An immediate question raises itself: What happens if there is no solution to
the original problem? Consider the following problem:

−x1 + 2x2 + x3 ≤ 3

3x1 − 2x2 + x3 ≤ −17 (6)

−x1 − 6x2 − 23x3 ≤ 19

February 2004] NOTES 153

We get an initial dictionary by introducing three slack variables and letting them be
the basic variables:

x4 = 3 + x1 − 2x2 − x3

x5 = −17 − 3x1 + 2x2 − x3 (7)

x6 = 19 + x1 + 6x2 + 23x3

The algorithm proceeds as before by choosing the equation for x5 and solving for x2:

x2 = 17/2 + (3/2)x1 + (1/2)x3 + (1/2)x5

x4 = −14 − 2x1 − 2x3 − x5 (8)

x6 = 70 + 10x1 + 26x3 + 3x5

Here we encounter something new. We select the equation for x4, as we should,
but find that there is no cobasic variable with a positive coefficient. We rewrite this
equation with all variables on the left-hand side, including those with zero coefficients,
getting

2x1 + 0x2 + 2x3 + 1x4 + 1x5 + 0x6 = −14. (9)

This is an example of an inconsistent equation. Note that the coefficients of all vari-
ables are nonnegative, but the right-hand side is negative. Therefore this equation can-
not be satisfied by choosing any combination of nonnegative values for the variables.
This equation was derived from the original system by standard operations that do not
change the solution set for the equations. Therefore (7), hence (6), has no nonnegative
solution. In fact, (9) provides a simple proof of this encoded in the boldface coeffi-
cients of the slack variables. We multiply each inequality in (6) by the coefficient of
its corresponding slack variable

1 ∗ (−x1 + 2x2 + x3 ≤ 3)

+1 ∗ (3x1 − 2x2 + x3 ≤ −17) (10)

+0 ∗ (−x1 − 6x2 − 23x3 ≤ 19)

and add the inequalities in (10) to get

2x1 + 2x3 ≤ −14. (11)

The final inequality (11) is called an inconsistent inequality: all the variables have
nonnegative coefficients, yet the right-hand side is negative. The multipliers given by
the coefficients of the slack variables are said to furnish a certificate of infeasibility for
the original system.

We now have a complete description of the algorithm that we christen the “b-rule”
for solving problems of form (1):

Step 1: Introduce m slack variables xn+1, . . . , xn+m and use these as the basis (left-
hand side) of an initial dictionary:

xn+i = bi −
n∑

j=1

ai j x j (i = 1, . . . , m). (12)

154 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

Step 2: Set the cobasic (right-hand side) variables to zero. Find the smallest index
of a basic (left-hand side) variables with a negative value. If there is none, terminate
with a feasible solution.

Step 3: Find the cobasic variable in the equation chosen in step 2 that has the small-
est index and a positive coefficient. If there is none, terminate, for the problem is infea-
sible, and the coefficients of the slack variables represent a certificate of infeasibility.
Otherwise, solve this equation for the indicated cobasic variable, and substitute the
result in all of the other equations. Go to step 2.

In what follows we prove:

• the algorithm that we have described halts after a finite number of steps;
• if it halts in step 2, then the basic solution is feasible for (1);
• if it halts in step 3, then the system (1) is infeasible and the slack coefficients “cer-

tify” this.

2. PROOF OF CORRECTNESS.

Theorem 1. The b-rule is finite.

Proof. Given an input system (1), we construct the initial dictionary (12) and run the
b-rule algorithm. Since there are at most

(n+m
m

)
possible choices of a basis, if the algo-

rithm is not finite (in the sense of halting after finitely many steps), then some bases
must be repeated, a process called cycling. Assume that this can happen, and choose a
system of equations that cycles.

Suppose first that xn+m (n + m being the largest index) enters and leaves the basis
during the cycle. When xn+m is chosen to enter the basis we must have an equation
of the following form, where B and N denote the set of basic and cobasic indices,
respectively:

xk = −b′
k −

∑
j∈N\{n+m}

a′
k j x j + a′

k,n+m xn+m (k ∈ B). (13)

The choice of xn+m as entering variable in this equation implies that −b′
k < 0,

a′
k,n+m > 0, and a′

k j ≥ 0 for j in N \ {n + m}. This shows that every solution to
the full system of equations with x1, . . . , xn+m−1 ≥ 0 must have xn+m > 0.

Now consider the stage at which xn+m is chosen to leave the basis. The dictionary
has the form:

xi = b′
i +

∑
j∈N

a′
i j x j (i ∈ B \ {n + m})

(14)
xn+m = −b′

n+m +
∑
j∈N

a′
n+m, j x j

The choice of xn+m ensures that −b′
n+m < 0 and b′

i ≥ 0 for i in B \ {n + m}. By
setting the cobasic variables to zero, dictionary (14) shows that there exists a solution
to the system of equations with x1, . . . , xn+m−1 ≥ 0 and xn+m < 0. Clearly not both
(13) and (14) can hold, so there cannot exist a cycle during which the largest-indexed
variable enters and leaves the basis.

Now suppose that there exists a cycle in which xn+m always stays in the basis. Then
we can remove xn+m and its corresponding equation without changing the pivot deci-
sions made during the cycle. Similarly, if there exists a cycle where xn+m always stays

February 2004] NOTES 155

in the cobasis, then we can remove xn+m from all of the equations without influencing
the cycle. Either way we can reduce the original example that cycles to an equivalent
example with a cycle during which the largest-indexed variable both enters and leaves
the basis. This leads to the two conflicting situations that we met earlier, so a cycle
cannot exist: the algorithm is finite.

Since the algorithm is finite, it must halt in either step 2 or step 3. If it terminates
in step 2, we have a nonnegative solution to the original system. This follows from
the fact that the only operations we performed on the initial dictionary were standard
operations for manipulating a system of equations. If the algorithm stops in step 3, we
have a certificate of infeasibility that, when stated in general terms, is a variant of the
Farkas lemma.

Theorem 2. Either there exists x in Rn with x ≥ 0 such that Ax ≤ b or there exists y
in Rm with y ≥ 0 such that yT A ≥ 0 and yT b < 0.

Proof. We begin by noting that there cannot exist both a vector x and a vector y sat-
isfying the conditions of the theorem. For otherwise, 0 > yT b ≥ yT Ax ≥ 0. If such a
vector x does not exist, the finiteness of the b-rule implies that the algorithm must halt
in step 3. The algorithm returns an inconsistent equation:

n+m∑
j=1,
j �=k

a′
k j x j + xk = −b′

k, (15)

where b′
k > 0 and all of the coefficients a′

k j ≥ 0. Set yi = a′
k,n+i ≥ 0 for i = 1, . . . , m.

We observe that equation (15) is obtained from the initial dictionary (12) by multiply-
ing the equation for xn+i by yi and summing. This is because variable xn+i appears
only once in the entire dictionary, as the left-hand side of its defining equation. This
shows that yT b = −b′

k < 0 and that

m∑
i=1

yi ai j = a′
k j ≥ 0 (j = 1, . . . , n), (16)

again by the halting property of the algorithm. Hence yT A ≥ 0.

3. CONCLUSION. The b-rule is a finite algorithm that finds a nonnegative solution
to a system of linear inequalities. Readers familiar with linear programming will rec-
ognize that the b-rule is the dual form of Bland’s rule [1] (see also [2]), with a zero ob-
jective (cost) row. Simple variants of the b-rule exist for finding a solution to Ax ≤ b or
to Ax = b and x ≥ 0, etc. We can also use the b-rule to obtain algorithmic proofs of
the Farkas lemma and the Fundamental Theorem of Linear Inequalities. In practice, the
b-rule can be used to find a starting primal-feasible basis for a linear program without
having to introduce the traditional “phase-one” artificial variable. However, as with all
pivot rules known, in the worst case it may require an exponential number of steps.

REFERENCES

1. R. G. Bland, New finite pivot rules for the simplex method, Math. Oper. Res. 2 (1977) 103–107.
2. V. Chvátal, Linear Programming, Freeman, New York, 1983.

156 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

3. K. Fukuda and T. Terlaky, Criss-cross methods: A fresh view on pivot algorithms, Math. Program. 79
(1997) 369–395.

4. G. Strang, Linear Algebra and Its Applications, Academic Press, London, 1980.

School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec, H3A 2A7, Canada
{avis,beezer}@cs.mcgill.ca

Cauchy’s Interlace Theorem for
Eigenvalues of Hermitian Matrices

Suk-Geun Hwang

Hermitian matrices have real eigenvalues. The Cauchy interlace theorem states that
the eigenvalues of a Hermitian matrix A of order n are interlaced with those of any
principal submatrix of order n − 1.

Theorem 1 (Cauchy Interlace Theorem). Let A be a Hermitian matrix of order n,
and let B be a principal submatrix of A of order n − 1. If λn ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ1

lists the eigenvalues of A and µn ≤ µn−1 ≤ · · · ≤ µ3 ≤ µ2 the eigenvalues of B, then
λn ≤ µn ≤ λn−1 ≤ µn−1 ≤ · · · ≤ λ2 ≤ µ2 ≤ λ1.

Proofs of this theorem have been based on Sylvester’s law of inertia [3, p. 186] and
the Courant-Fischer minimax theorem [1, p. 411], [2, p. 185]. In this note, we give a
simple, elementary proof of the theorem by using the intermediate value theorem.

Proof. Simultaneously permuting rows and columns, if necessary, we may assume that
the submatrix B occupies rows 2, 3, . . . , n and columns 2, 3, . . . , n, so that A has the
form

A =
[

a y∗
y B

]
,

where ∗ signifies the conjugate transpose of a matrix. Let D = diag(µ2, µ3, . . . , µn).
Then, since B is also Hermitian, there exists a unitary matrix U of order n − 1 such
that U ∗BU = D. Let U ∗y = z = (z2, z3, . . . , zn)

T .
We first prove the theorem for the special case where µn < µn−1 < · · · < µ3 < µ2

and zi �= 0 for i = 2, 3, . . . , n. Let

V =
[

1 0T

0 U

]
,

in which 0 denotes the zero vector. Then V is a unitary matrix and

V ∗AV =
[

a z∗
z D

]
.

Let f (x) = det(x I − A) = det(x I − V ∗ AV), where I denotes the identity matrix.
Expanding det(x I − V ∗AV) along the first row, we get

February 2004] NOTES 157

