
Computer. The word conjures
up images of keyboards and
monitors. Terms like “ROM,”

“RAM,” “gigabyte” and “megahertz”
come to mind. We have grown accus-
tomed to the idea that computation
takes place using electronic compo-
nents on a silicon substrate.

But must it be this way? The comput-
er that you are using to read these
words bears little resemblance to a PC.
Perhaps our view of computation is too
limited. What if computers were ubiq-
uitous and could be found in many
forms? Could a liquid computer exist in
which interacting molecules perform
computations? The answer is yes. This
is the story of the DNA computer.

Rediscovering Biology

My involvement in this story began
in 1993, when I walked into a

molecular biology lab for the first time.
Although I am a mathematician and
computer scientist, I had done a bit of
AIDS research, which I believed and still
believe to be of importance [see “Bal-
anced Immunity,” by John Rennie; Sci-
entific American, May 1993]. Unfor-

tunately, I had been remarkably unsuc-
cessful in communicating my ideas to
the AIDS research community. So, in an
effort to become a more persuasive ad-
vocate, I decided to acquire a deeper
understanding of the biology of HIV.
Hence, the molecular biology lab. There,
under the guidance of Nickolas Chelya-
pov (now chief scientist in my own lab-
oratory), I began to learn the methods
of modern biology.

I was fascinated. With my own hands,
I was creating DNA that did not exist
in nature. And I was introducing it into
bacteria, where it acted as a blueprint for
producing proteins that would change
the very nature of the organism.

During this period of intense learn-
ing, I began reading the classic text The
Molecular Biology of the Gene, co-au-
thored by James D. Watson of Watson-
Crick fame. My concept of biology was
being dramatically transformed. Biolo-
gy was no longer the science of things
that smelled funny in refrigerators (my
view from undergraduate days in the
1960s at the University of California at
Berkeley). The field was undergoing a
revolution and was rapidly acquiring
the depth and power previously associ-

ated exclusively with the physical sci-
ences. Biology was now the study of in-
formation stored in DNA—strings of
four letters: A, T, G and C for the bases
adenine, thymine, guanine and cyto-
sine—and of the transformations that
information undergoes in the cell. There
was mathematics here!

Late one evening, while lying in bed
reading Watson’s text, I came to a de-
scription of DNA polymerase. This is
the king of enzymes—the maker of life.
Under appropriate conditions, given a
strand of DNA, DNA polymerase pro-
duces a second “Watson-Crick” com-
plementary strand, in which every C is
replaced by a G, every G by a C, every
A by a T and every T by an A. For ex-
ample, given a molecule with the se-
quence CATGTC, DNA polymerase
will produce a new molecule with the
sequence GTACAG. The polymerase
enables DNA to reproduce, which in
turn allows cells to reproduce and ulti-
mately allows you to reproduce. For a
strict reductionist, the replication of
DNA by DNA polymerase is what life
is all about.

DNA polymerase is an amazing little
nanomachine, a single molecule that

Computing with DNA54 Scientific American August 1998

Computing with DNA
The manipulation of DNA to solve
mathematical problems is redefining

what is meant by “computation”

by Leonard M. Adleman

Copyright 1998 Scientific American, Inc.

“hops” onto a strand of DNA and slides
along it, “reading” each base it passes
and “writing” its complement onto a
new, growing DNA strand. While lying
there admiring this amazing enzyme, I
was struck by its similarity to something
described in 1936 by Alan M. Turing,
the famous British mathematician. Tur-
ing—and, independently, Kurt Gödel,
Alonzo Church and S. C. Kleene—had
begun a rigorous study of the notion of
“computability.” This purely theoreti-
cal work preceded the advent of actual
computers by about a decade and led to
some of the major mathematical results
of the 20th century [see “Unsolved
Problems in Arithmetic,” by Howard
DeLong; Scientific American, March
1971; and “Randomness in Arithme-
tic,” by Gregory J. Chaitin; Scientific
American, July 1988].

For his study, Turing had invented a
“toy” computer, now referred to as a
Turing machine. This device was not
intended to be real but rather to be con-
ceptual, suitable for mathematical in-
vestigation. For this purpose, it had to
be extremely simple—and Turing suc-
ceeded brilliantly. One version of his
machine consisted of a pair of tapes

and a mechanism called a finite control,
which moved along the “input” tape
reading data while simultaneously mov-
ing along the “output” tape reading and
writing other data. The finite control
was programmable with very simple in-
structions, and one could easily write a
program that would read a string of A,
T, C and G on the input tape and write
the Watson-Crick complementary string
on the output tape. The similarities with
DNA polymerase could hardly have
been more obvious.

But there was one important piece of
information that made this similarity
truly striking: Turing’s toy computer
had turned out to be universal—simple
as it was, it could be programmed to
compute anything that was computable
at all. (This notion is essentially the con-
tent of the well-known “Church’s the-
sis.”) In other words, one could program
a Turing machine to produce Watson-
Crick complementary strings, factor
numbers, play chess and so on. This re-
alization caused me to sit up in bed and
remark to my wife, Lori, “Jeez, these
things could compute.” I did not sleep
the rest of the night, trying to figure out
a way to get DNA to solve problems.

My initial thinking was to make a
DNA computer in the image of a Tur-
ing machine, with the finite control re-
placed by an enzyme. Remarkably, es-
sentially the same idea had been sug-
gested almost a decade earlier by Charles
H. Bennet and Rolf Landauer of IBM
[see “The Fundamental Physical Limits
of Computation”; Scientific Ameri-
can, July 1985]. Unfortunately, while an
enzyme (DNA polymerase) was known
that would make Watson-Crick comple-
ments, it seemed unlikely that any exist-
ed for other important roles, such as
factoring numbers.

This brings up an important fact
about biotechnologists: we are a com-
munity of thieves. We steal from the
cell. We are a long way from being able

Computing with DNA

TO
M

O
 N

A
RA

SH
IM

A

DNA MOLECULES—with their sequences of
adenine, thymine, guanine and cytosine (repre-
sented by the letters A, T, G and C)—can be
used to store information and to perform com-
putations. The molecule shown here in color,
GCAGTCGGACTGGGCTATGTCCGA, en-
codes the solution to the sample Hamiltonian
Path Problem on the next page.

Scientific American August 1998 55
Copyright 1998 Scientific American, Inc.

to create de novo miraculous molecular
machines such as DNA polymerase.
Fortunately, three or four billion years
of evolution have resulted in cells that
are full of wondrous little machines. It
is these machines, stolen from the cell,
that make modern biotechnology possi-
ble. But a molecular machine that would
play chess has apparently never evolved.
So if I were to build a DNA computer
that could do something interesting, I
would have to do it with the tools that

were at hand. These tools were essen-
tially the following:

1. Watson-Crick pairing. As stated
earlier, every strand of DNA has its Wat-
son-Crick complement. As it happens,
if a molecule of DNA in solution meets
its Watson-Crick complement, then the
two strands will anneal—that is, twist
around each other to form the famous
double helix. The strands are not cova-
lently bound but are held together by

weak forces such as hydrogen bonds. If
a molecule of DNA in solution meets a
DNA molecule to which it is not com-
plementary (and has no long stretches
of complementarity), then the two mol-
ecules will not anneal.

2. Polymerases. Polymerases copy in-
formation from one molecule into an-
other. For example, DNA polymerase
will make a Watson-Crick complemen-
tary DNA strand from a DNA template.
In fact, DNA polymerase needs a “start

Computing with DNA56 Scientific American August 1998

Consider a map of cities connected by certain nonstop
flights (top right). For instance, in the example shown here,

it is possible to travel directly from Boston to Detroit but not vice
versa. The goal is to determine whether a path exists that will
commence at the start city (Atlanta), finish at the end city (De-
troit) and pass through each of the remaining cities exactly once.
In DNA computation, each city is assigned a DNA sequence
(ACTTGCAG for Atlanta) that can be thought of as a first name
(ACTT) followed by a last name (GCAG). DNA flight numbers can
then be defined by concatenating the last name of the city of
origin with the first name of the city of destination (bottom right).

The complementary DNA city names are the Watson-Crick
complements of the DNA city names in which every C is replaced
by a G, every G by a C, every A by a T, and every T by an A. (To sim-
plify the discussion here, details of the 3′ versus 5′ ends of the
DNA molecules have been omitted.) For this particular problem,

only one Hamiltonian path exists,
and it passes through Atlanta,
Boston, Chicago and Detroit in that
order. In the computation, this
path is represented by GCAGTCG-
GACTGGGCTATGTCCGA, a DNA se-
quence of length 24. Shown at the
left is the map with seven cities
and 14 nonstop flights used in the
actual experiment. —L.M.A. SL

IM
 F

IL
M

SSTART

END

ATLANTA TO BOSTON
BOSTON TO CHICAGO

CHICAGO TO DETROIT

COMPLEMENT OF BOSTON

COMPLEMENT OF CHICAGO

G

C
A

A

A

A

A

A

A

A
A

G

T

T

T
T

T

T

T

C

C C

C

C

C

C

C

C

C

C

G

G

G

G

G

G

G
G

G

G

Hamiltonian Path Problem

CITY
ATLANTA
BOSTON
CHICAGO
DETROIT
FLIGHT
ATLANTA - BOSTON
ATLANTA - DETROIT
BOSTON - CHICAGO
BOSTON - DETROIT
BOSTON - ATLANTA
CHICAGO - DETROIT

DNA NAME
A C T T G C A G
T C G G A C T G
G G C TAT G T
C C G A G C A A

DNA FLIGHT NUMBER
G C A G T C G G
G C A G C C G A
A C T G G G C T
A C T G C C G A
A C T G A C T T
AT G T C C G A

COMPLEMENT
T G A A C G T C
A G C C T G A C
C C G ATA C A
G G C T C G T T

Boston

Atlanta

Detroit

Chicago

WATSON-CRICK
ANNEALING,
in which Cs pair
with Gs and As join
with Ts, will result in
DNA flight-number
strands (shown here: At-
lanta to Boston, Boston
to Chicago, and Chicago
to Detroit) being held end-
to-end by strands encoding
the complementary DNA city
names (shown here: Boston
and Chicago).

Copyright 1998 Scientific American, Inc.

signal” to tell it where to begin making
the complementary copy. This signal is
provided by a primer—a (possibly short)
piece of DNA that is annealed to the
template by Watson-Crick complemen-
tarity. Wherever such a primer-template
pair is found, DNA polymerase will be-
gin adding bases to the primer to create
a complementary copy of the template.

3. Ligases. Ligases bind molecules to-
gether. For example, DNA ligase will
take two strands of DNA in proximity
and covalently bond them into a single
strand. DNA ligase is used by the cell to
repair breaks in DNA strands that oc-
cur, for instance, after skin cells are ex-
posed to ultraviolet light.

4. Nucleases. Nucleases cut nucleic
acids. For example, restriction endonu-
cleases will “search” a strand of DNA
for a predetermined sequence of bases
and, when found, will cut the molecule
into two pieces. EcoRI (from Escheri-
chia coli) is a restriction enzyme that will
cut DNA after the G in the sequence
GAATTC—it will almost never cut a
strand of DNA anywhere else. It has
been suggested that restriction enzymes
evolved to protect bacteria from viruses
(yes, even bacteria have viruses!). For
example, E. coli has a means (methyla-
tion) of protecting its own DNA from
EcoRI, but an invading virus with the
deadly GAATTC sequence will be cut
to pieces. My DNA computer did not
use restriction enzymes, but they have
been used in subsequent experiments
by many other research groups.

5. Gel electrophoresis. This is not
stolen from the cell. A solution of het-
erogeneous DNA molecules is placed in
one end of a slab of gel, and a current is
applied. The negatively charged DNA
molecules move toward the anode, with

shorter strands moving more quickly
than longer ones. Hence, this process
separates DNA by length. With special
chemicals and ultraviolet light, it is pos-
sible to see bands in the gel where the
DNA molecules of various lengths have
come to rest.

6. DNA synthesis. It is now possible
to write a DNA sequence on a piece of
paper, send it to a commercial synthesis
facility and in a few days receive a test
tube containing approximately 1018

molecules of DNA, all (or at least most)
of which have the described sequence.
Currently sequences of length approxi-
mately 100 can be reliably handled in
this manner. For a sequence of length
20, the cost is about $25. The molecules
are delivered dry in a small tube and ap-
pear as a small, white, amorphous lump.

None of these appeared likely to help
play chess, but there was another im-
portant fact that the great logicians of
the 1930s taught us: computation is
easy. To build a computer, only two
things are really necessary—a method
of storing information and a few simple
operations for acting on that informa-
tion. The Turing machine stores infor-
mation as sequences of letters on tape
and manipulates that information with
the simple instructions in the finite con-
trol. An electronic computer stores in-
formation as sequences of zeros and
ones in memory and manipulates that
information with the operations avail-
able on the processor chip. The remark-
able thing is that just about any method
of storing information and any set of
operations to act on that information
are good enough.

Good enough for what? For univer-
sal computation—computing anything

that can be computed. To get your com-
puter to make Watson-Crick comple-
ments or to play chess, you need only
start with the correct input information
and apply the right sequence of opera-
tions—that is, run a program. DNA is a
great way to store information. In fact,
the cell has been using this method to
store the “blueprint for life” for billions
of years. Further, enzymes such as poly-
merases and ligases have been used to
operate on this information. Was there
enough to build a universal computer?
Because of the lessons of the 1930s, I
was sure that the answer was yes.

The Hamiltonian Path Problem

The next task was choosing a prob-
lem to solve. It should not appear

to be contrived to fit the machine, and
it should demonstrate the potential of
this novel method of computation. The
problem I chose was the Hamiltonian
Path Problem.

William Rowan Hamilton was As-
tronomer Royal of Ireland in the mid-
19th century. The problem that has
come to bear his name is illustrated in
the box on the opposite page. Let the
arrows (directed edges) represent the
nonstop flights between the cities (ver-
tices) in the map (graph). For example,
you can fly nonstop from Boston to
Chicago but not from Chicago to Bos-
ton. Your job (the Hamiltonian Path
Problem) is to determine if a sequence
of connecting flights (a path) exists that
starts in Atlanta (the start vertex) and
ends in Detroit (the end vertex), while
passing through each of the remaining
cities (Boston and Chicago) exactly
once. Such a path is called a Hamilton-
ian path. In the example shown on

Computing with DNA Scientific American August 1998 57

LIGASES connect
the splinted mole-
cules. Wherever the
protein finds two
strands of DNA in
proximity, it will
covalently bond
them into a single
strand.

TO
M

O
 N

A
RA

SH
IM

A

LIGASE

G
C

A

A

A

A

A

A

A

A
A

G

T

T

T

T

T

T

T

CC

C

C

C

C

C

C

C

C

C

G

G

G
G

G
G

GG
G

G

Copyright 1998 Scientific American, Inc.

page 56, it is easy to see that a unique
Hamiltonian path exists, and it passes
through the cities in this order: Atlanta,
Boston, Chicago, Detroit. If the start
city were changed to Detroit and the
end city to Atlanta, then clearly there
would be no Hamiltonian path.

More generally, given a graph with
directed edges and a specified start ver-
tex and end vertex, one says there is a
Hamiltonian path if and only if there is a
path that starts at the start vertex, ends
at the end vertex and passes though each
remaining vertex exactly once. The
Hamiltonian Path Problem is to decide
for any given graph with specified start
and end vertices whether a Hamiltoni-
an path exists or not.

The Hamiltonian Path Problem has
been extensively studied by computer
scientists. No efficient (that is, fast) al-
gorithm to solve it has ever emerged. In
fact, it seems likely that even using the
best currently available algorithms and
computers, there are some graphs of
fewer than 100 vertices for which de-
termining whether a Hamiltonian path
exists would require hundreds of years.

In the early 1970s the Hamiltonian

Path Problem was shown to be “NP-
complete.” Without going into the the-
ory of NP-completeness, suffice it to
say that this finding convinced most
theoretical computer scientists that no
efficient algorithm for the problem is
possible at all (though proving this re-
mains the most important open prob-
lem in theoretical computer science, the
so-called NP = P? problem [see “Turing
Machines,” by John E. Hopcroft; Scien-
tific American, May 1984]). This is
not to say that no algorithms exist for
the Hamiltonian Path Problem, just no
efficient ones. For example, consider the
following algorithm:

Given a graph with n vertices,
1. Generate a set of random

paths through the graph.
2. For each path in the set:

a. Check whether that path
starts at the start vertex
and ends with the end
vertex. If not, remove
that path from the set.

b. Check if that path passes
through exactly n vertices.
If not, remove that path

from the set.
c. For each vertex, check if

that path passes through
that vertex. If not, remove
that path from the set.

3. If the set is not empty, then
report that there is a Hamil-
tonian path. If the set is
empty, report that there
is no Hamiltonian path.

This is not a perfect algorithm; never-
theless, if the generation of paths is ran-
dom enough and the resulting set large
enough, then there is a high probability
that it will give the correct answer. It is
this algorithm that I implemented in the
first DNA computation.

Seven Days in a Lab

For my experiment, I sought a Ham-
iltonian Path Problem small enough

to be solved readily in the lab, yet large
enough to provide a clear “proof of
principle” for DNA computation. I chose
the seven-city, 14-flight map shown in
the inset on page 56. A nonscientific
study has shown that it takes about 54

Computing with DNA58 Scientific American August 1998

POLYMERASE CHAIN REACTION, or PCR, is used to replicate DNA molecules that begin with
the start city (Atlanta) and terminate with the end city (Detroit). In this example, a primer—GGCT,
representing the complement of the first name of Detroit—is annealed to the right end of a DNA
strand. The primer signals the polymerase to begin making a Watson-Crick complement of the strand.
After the polymerase is done, the double helix is split into two strands so that Watson-Crick comple-
ments of each half can be made. This process is repeated to obtain a large number of copies of mole-
cules that have the correct start and end cities. Gel electrophoresis is then used to isolate those molecules
that have the right sequence length of 24.

DNA POLYMERASE

G C

A

A
A

A

A

G

T

T

T
T

T

C

C

C

C

C
C

G

G G

G

G

G

Copyright 1998 Scientific American, Inc.

seconds on average to find the unique
Hamiltonian path in this graph. (You
may begin now... .)

To simplify the discussion here, con-
sider the map on page 56, which con-
tains just four cities—Atlanta, Boston,
Chicago and Detroit—linked by six
flights. The problem is to determine the
existence of a Hamiltonian path start-
ing in Atlanta and ending in Detroit.

I began by assigning a random DNA
sequence to each city. In our example,
Atlanta becomes ACTTGCAG, Boston
TCGGACTG and so on. It was conve-
nient to think of the first half of the
DNA sequence as the first name of the
city and the second half as the last
name. So Atlanta’s last name is GCAG,
whereas Boston’s first name is TCGG.
Next, I gave each nonstop flight a DNA
“flight number,” obtained by concate-
nating the last name of the city of origin
with the first name of the city of desti-
nation. In the example on page 56, the
Atlanta-to-Boston flight number be-
comes GCAGTCGG.

Recall that each strand of DNA has
its Watson-Crick complement. Thus,
each city has its complementary DNA

name. Atlanta’s complementary name
becomes, for instance, TGAACGTC.

After working out these encodings, I
had the complementary DNA city names
and the DNA flight numbers synthesized.
(As it turned out, the DNA city names
themselves were largely unnecessary.) I
took a pinch (about 1014 molecules) of
each of the different sequences and put
them into a common test tube. To be-
gin the computation, I simply added
water—plus ligase, salt and a few other
ingredients to approximate the condi-
tions inside a cell. Altogether only about
one fiftieth of a teaspoon of solution
was used. Within about one second, I
held the answer to the Hamiltonian
Path Problem in my hand.

To see how, consider what transpires
in the tube. For example, the Atlanta-to-
Boston flight number (GCAGTCGG)
and the complementary name of Boston
(AGCCTGAC) might meet by chance.
By design, the former sequence ends

with TCGG, and the latter starts with
AGCC. Because these sequences are
complementary, they will stick togeth-
er. If the resulting complex now en-
counters the Boston-to-Chicago flight
number (ACTGGGCT), it, too, will
join the complex because the end of
the former (TGAC) is complementary
to the beginning of the latter (ACTG).
In this manner, complexes will grow in
length, with DNA flight numbers splint-
ed together by complementary DNA
city names. The ligase in the mixture
will then permanently concatenate the
chains of DNA flight numbers. Hence,
the test tube contains molecules that
encode random paths through the
different cities (as required in the first
step of the algorithm).

Because I began with such a large
number of DNA molecules and the

problem contained just a handful of
cities, there was a virtual certainty that
at least one of the molecules formed
would encode the Hamiltonian path. It
was amazing to think that the solution
to a mathematical problem could be
stored in a single molecule!

Notice also that all the paths were
created at once by the simultaneous in-
teractions of literally hundreds of tril-
lions of molecules. This biochemical re-
action represents enormous parallel
processing.

For the map on page 56, there is only
one Hamiltonian path, and it goes
through Atlanta, Boston, Chicago and
Detroit, in that order. Thus, the mole-
cule encoding the solution will have the
sequence GCAGTCGGACTGGGCT-
ATGTCCGA.

Unfortunately, although I held the so-
lution in my hand, I also held about 100
trillion molecules that encoded paths
that were not Hamiltonian. These had
to be eliminated. To weed out molecules
that did not both begin with the start
city and terminate with the end city, I
relied on the polymerase chain reaction
(PCR). This important technique re-
quires many copies of two short pieces
of DNA as primers to signal the DNA
polymerase to start its Watson-Crick
replication. The primers used were the
last name of the start city (GCAG for

Computing with DNA Scientific American August 1998 59

TO
M

O
 N

A
RA

SH
IM

A

PRIMER

A

A

A

T

T

T

C

C

C

C

G

G

G

G

Copyright 1998 Scientific American, Inc.

Atlanta) and the Watson-Crick comple-
ment of the first name of the end city
(GGCT for Detroit). These two prim-
ers worked in concert: the first alerted
DNA polymerase to copy complements
of sequences that had the right start city,
and the second initiated the duplication
of molecules that encoded the correct
end city.

PCR proceeds through thermocycling,
repeatedly raising and lowering the tem-
perature of the mixture in the test tube.
Warm conditions encourage the DNA
polymerase to begin duplicating; a hot-
ter environment causes the resulting an-
nealed strands to split from their dou-
ble-helix structure, enabling subsequent
replication of the individual pieces.

The result was that molecules with
both the right start and end cities were
reproduced at an exponential rate. In
contrast, molecules that encoded the
right start city but an incorrect end city,
or vice versa, were duplicated in a much
slower, linear fashion. DNA sequences
that had neither the right start nor end
were not duplicated at all. Thus, by tak-
ing a small amount of the mixture after
the PCR was completed, I obtained a
solution containing many copies of the
molecules that had both the right start
and end cities, but few if any molecules
that did not meet this criterion. Thus,
step 2a of the algorithm was complete.

Next, I used gel electrophoresis to
identify those molecules that had the

right length (in the exam-
ple on page 56, a length of
24). All other molecules were
discarded. This completed step
2b of the algorithm.

To check the remaining se-
quences for whether their paths
passed through all the intermediary
cities, I took advantage of Watson-
Crick annealing in a procedure called
affinity separation. This process uses
multiple copies of a DNA “probe” mol-
ecule that encodes the complementary
name of a particular city (for example,
Boston). These probes are attached to
microscopic iron balls, each approxi-
mately one micron in diameter.

I suspended the balls in the tube con-
taining the remaining molecules under
conditions that encouraged Watson-
Crick pairing. Only those molecules that
contained the desired city’s name (Bos-
ton) would anneal to the probes. Then I
placed a magnet against the wall of the

Computing with DNA60 Scientific American August 1998

PROBE MOLECULES are used to locate DNA strands encoding paths that pass
through the intermediate cities (Boston and Chicago). Probe molecules containing the
complementary DNA name of Boston (AGCCTGAC) are attached to an iron ball sus-
pended in liquid. Because of Watson-Crick affinity, the probes capture DNA strands
that contain Boston’s name (TCGGACTG). Strands missing Boston’s name are then
discarded. The process is repeated with probe molecules encoding the complementary
DNA name of Chicago. When all the computational steps are completed, the strands
left will be those that encode the solution GCAGTCGGACTGGGCTATGTCCGA.

TO
M

O
 N

A
RA

SH
IM

A

IRON BALL

PROBE MOLECULES

C

A

A

A

A

A

A

A

G

G

G

T

T

T

T

T

C

C

C

C

C

C C

C

C
G

G
G

G G

G

G

G

C

A

A

G

T

C

G

Copyright 1998 Scientific American, Inc.

test tube to attract and hold the metal
balls to the side while I poured out the
liquid phase containing molecules that
did not have the desired city’s name.

I then added new solvent and removed
the magnet in order to resuspend the
balls. Raising the temperature of the
mixture caused the molecules to break
free from the probes and redissolve in
the liquid. Next, I reapplied the magnet
to attract the balls again to the side of
the test tube, but this time without any
molecules attached. The liquid, which
now contained the desired DNA strands
(in the example, encoding paths that
went through Boston), could then be
poured into a new tube for further
screening. The process was repeated for
the remaining intermediary cities (Chi-
cago, in this case). This iterative proce-
dure, which took me an entire day to
complete in the lab, was the most te-
dious part of the experiment.

At the conclusion of the affinity sepa-
rations, step 2c of the algorithm was
over, and I knew that the DNA mole-

cules left in the tube should be precisely
those encoding Hamiltonian paths.
Hence, if the tube contained any DNA
at all, I could conclude that a Hamilto-
nian path existed in the graph. No
DNA would indicate that no such path
existed. Fortunately, to make this deter-
mination I could use an additional PCR
step, followed by another gel-elec-
trophoresis operation. To my delight,
the final analysis revealed that the mol-
ecules that remained did indeed encode
the desired Hamiltonian path. After
seven days in the lab, the first DNA
computation was complete.

A New Field Emerges

What about the future? It is clear
that molecular computers have

many attractive properties. They pro-
vide extremely dense information stor-
age. For example, one gram of DNA,
which when dry would occupy a volume
of approximately one cubic centimeter,
can store as much information as ap-
proximately one trillion CDs. They pro-
vide enormous parallelism. Even in the
tiny experiment carried out in one fifti-
eth of a teaspoon of solution, approxi-
mately 1014 DNA flight numbers were
simultaneously concatenated in about
one second. It is not clear whether the
fastest supercomputer available today
could accomplish such a task so quickly.

Molecular computers also have the
potential for extraordinary energy effi-
ciency. In principle, one joule is sufficient
for approximately 2 × 1019 ligation op-
erations. This is remarkable consider-
ing that the second law of thermody-
namics dictates a theoretical maximum
of 34 × 1019 (irreversible) operations per
joule (at room temperature). Existing
supercomputers are far less efficient, ex-
ecuting at most 109 operations per joule.

Experimental and theoretical scien-
tists around the world are working to
exploit these properties. Will they suc-
ceed in creating molecular computers

that can compete with electronic com-
puters? That remains to be seen. Huge
financial and intellectual investments
over half a century have made electron-
ic computers the marvels of our age—
they will be hard to beat.

But it would be shortsighted to view
this research only in such practical
terms. My experiment can be viewed as
a manifestation of an emerging new
area of science made possible by our
rapidly developing ability to control the
molecular world. Evidence of this new
“molecular science” can be found in
many places. For example, Gerald F.
Joyce of Scripps Research Institute in
La Jolla, Calif., “breeds” trillions of
RNA molecules, generation after gener-
ation, until “champion” molecules
evolve that have the catalytic properties
he seeks [see “Directed Molecular Evo-
lution,” by Gerald F. Joyce; Scientific
American, December 1992]. Julius Re-
bek, Jr., of the Massachusetts Institute
of Technology creates molecules that
can reproduce—informing us about how
life on the earth may have arisen [see
“Synthetic Self-Replicating Molecules,”
by Julius Rebek, Jr.; Scientific Ameri-
can, July 1994]. Stimulated by research
on DNA computation, Erik Winfree of
the California Institute of Technology
synthesizes “intelligent” molecular com-
plexes that can be “programmed” to
assemble themselves into predetermined
structures of arbitrary complexity. There
are many other examples. It is the enor-
mous potential of this new area that we
should focus on and nurture.

For me, it is enough just to know that
computation with DNA is possible. In
the past half-century, biology and com-
puter science have blossomed, and
there can be little doubt that they will
be central to our scientific and econom-
ic progress in the new millennium. But
biology and computer science—life and
computation—are related. I am confi-
dent that at their interface great discov-
eries await those who seek them.

Computing with DNA Scientific American August 1998 61

The Author

LEONARD M. ADLEMAN received a Ph.D. in computer sci-
ence in 1976 from the University of California, Berkeley. In 1977 he
joined the faculty in the mathematics department at the Mas-
sachusetts Institute of Technology, where he specialized in algorith-
mic number theory and was one of the inventors of the RSA public-
key cryptosystem. (The “A” in RSA stands for “Adleman.”) Soon
after joining the computer science faculty at the University of South-
ern California, he was “implicated” in the emergence of computer
viruses. He is a member of the National Academy of Engineering.

Further Reading

Molecular Computation of Solutions to Combinatorial
Problems. Leonard M. Adleman in Science, Vol. 266, pages
1021–1024; November 11, 1994.

On the Path to Computation with DNA. David K. Gifford in
Science, Vol. 266, pages 993–994; November 11, 1994.

DNA Solution of Hard Computational Problems. Richard J.
Lipton in Science, Vol. 268, pages 542–545; April 28, 1995.

Additional information on DNA computing can be found at http://
users.aol.com/ibrandt/dna_computer.html on the World Wide Web.

A

T

T

C C

G

G

C

SA

Copyright 1998 Scientific American, Inc.

